
Current uses of 
CS-Studio at Diamond 

Light Source
Matthew Furseman

10:00, Thursday 22nd September, 2016



Contents

• Motivation

• EDM conversion process at DLS

• Conversion Screenshots

• GUI Builder

• I14/I21 Screenshots and descriptions



Motivation for moving from EDM to CS-Studio

• EDM is nearing end of life (or is it!? ‘Future of edm’, 14:00 today).

• EDM’s libraries are being phased out.

• EDM is supported by one person, CS-Studio has community 
support due to use at many sites.

• We could benefit from the rest of the infrastructure that CS-Studio 
provides, such as BEAST on beamlines and V4 compatibility.

• Potential to integrate into DAWN and GDA; Diamond’s data 
analysis and data acquisition software is also built on Eclipse RCP.



Overview of conversion process

https://github.com/dls-controls/css-converter-python

Module to be 
converted

Dependency

Dependency

Dependency

Dependency

Checkout module to be converted.
Script checks configure/* for dependencies 
and also checks out dependent module 
tree.

Python Script

Find EDL 
Files converter.jar Post Process

Part of CS-Studio, 
built by Jenkins.

Relative paths are used with linked resources 
to take care of versioning and editing out of 
the read only production file system.



Widgets must be on the top of the stack to be clickable in CS-Studio but not in EDM. 
Recreate clicks on the top attached to an invisible rectangle.

CLICK

Post processing: Click ordering

LED

LED LED

LED

EDM

LED

LED LED

LED

CS-Studio

CLICK

Invisible
Rectangle



Post processing: Grouping containers
Extend grouping container boundaries to include all widgets.

LED

LED LED

LED

EDM

Cropped

GROUPING 
CONTAINER

LED

LED LED

LED

CS-Studio

GROUPING 
CONTAINER

LED

LED LED

LED

Fixed!



Post processing

• Convert EDL symbol files for DLS symbol widget.

• Swap some fonts and sizes to improve legibility.

• Tweak colours to keep antialiased fonts legible.

Must ‘infer’ what the designer wants,
ends up with some manual corrections.



Many small issues we have overcome

• Can’t create local Enum PVs

• Escaping quotes in external command line calls

• Unsigned data in intensity graph

• Missing grid lines in XY-Graph

• Keeping specific OPI files bound to a view when changing 
perspective and restarting

• Many many more...



Some more small issues yet to be overcome

• Char arrays are shown as integers in text updates, not ASCII text.

• Small (~1px) sized details can be lost by slight changes in widget 
and border dimensions. 

• Font and colour tweaks have unexpected results when screens 
don’t conform to design guidelines.

• Graph missing points, because it has 250,000 of them!

These types of issue can normally be patched manually after 
conversion. Automated conversion needs to reduce this to an 
acceptable workload.









Introduction to GUI Builder

• Diamond has two new beamlines that are currently being 
commissioned, I14 and I21. 

• These beamlines have no legacy usage of EDM and so were 
ideally suited to a CS-Studio only interface.

• A framework has been developed at Diamond to automate GUI 
generation for beamlines, dls_guibuilder, and used on these two 
beamlines.



Beamline GUI overview



Beamline GUI overview

Synoptic Overview

The synoptic overview remains open at all 
times. If the user closes this accidentally they 
can reset the perspective. Clicking on each 
icon brings up the GUI for that component ...



Beamline GUI overview

Component Overview

Get information about devices for controlling 
slits, monochromators, mirrors, cameras, 
and other beamline hardware. Clicking on 
each device brings up additional controls 
specific to that device...



Beamline GUI overview

Device Controls

Detailed controls and information for each 
device. Information is kept manageable using an 
expandable view,this is a custom DLS 
‘detailpanel’ widget.

Scientists run on dual headed workstations, 
devices can be dragged onto the second monitor 
when required.



DLS GUI Builder: how it works

• Create tags in template files, in support modules, to describe the 
simple components that will be created when an instance of the 
template is instantiated.

• Create an expanded database in the usual way, then use 
dls_epicsparser to parse this with the gui handler to create an XML 
file consisting of named groups of PVs and screens to represent 
the simple components that have been created.

• Make a python script that uses dls_guibuilder to add definitions of 
the components from the XML file, and create new complex 
component screens and PVs by grouping definitions contained 
within.

• Any changes made to the OPI by hand will be kept and the OPI will 
just be validated against the current database.



Summary

Making progress on automated conversions, but the process still 
requires some manual tweaks. RF and timing are almost ready to be 
rolled out to machine operators, following lattice modification.

CS-Studio on new beamlines is working well.


