
Automatic Formal Verification for EPICS

Jonathan Jacky, Stefani Banerian,
Michael Ernst, Calvin Loncaric, Stuart Pernsteiner,

Zach Tatlock, Emina Torlak

Department of Radiation Oncology
University of Washington Medical Center

Department of Computer Science and Engineering
University of Washington

jon@uw.edu, http://staff.washington.edu/jon/

Jonathan Jacky, Stefani Banerian, Michael Ernst, Calvin Loncaric, Stuart Pernsteiner, Zach Tatlock, Emina TorlakAutomatic Formal Verification for EPICS

Topics

Four related projects:

Radiation therapy machine control system, a safety-critical
medical application, that uses EPICS.

New tool for finding functional errors in EPICS databases,
made with satisfiability checker technology.

Intensive review and test of the EPICS database engine, using
a new purpose-built re-implementation of (parts of) EPICS,
made with theorem prover technology.

New tool for compiling an EPICS database to a standalone
program that runs without (parts of) EPICS, made with
verified compiler technology.

Nothing is ready to distribute yet, but we are seeking collaborators
to help use and evaluate the tools.

Jonathan Jacky, Stefani Banerian, Michael Ernst, Calvin Loncaric, Stuart Pernsteiner, Zach Tatlock, Emina TorlakAutomatic Formal Verification for EPICS

UWMC Clinical Neutron Therapy System (CNTS)

Hospital-based cyclotron and neutron radiation therapy

Jonathan Jacky, Stefani Banerian, Michael Ernst, Calvin Loncaric, Stuart Pernsteiner, Zach Tatlock, Emina TorlakAutomatic Formal Verification for EPICS

CNTS Control System: Safety requirements

We must ensure that the we satisfy this overall safety requirement:

The neutron beam can only turn on or remain on when the
machine setup matches a prescription that has been selected
by the operator.

This overall requirement is composed of hundreds of detailed
requirements, for example:

The actual gantry angle must match the prescribed angle
within a given tolerance, when the machine is in therapy
mode and that setting has not been overridden and . . .

Checking all these requirements is a formidable task.

Jonathan Jacky, Stefani Banerian, Michael Ernst, Calvin Loncaric, Stuart Pernsteiner, Zach Tatlock, Emina TorlakAutomatic Formal Verification for EPICS

EPICS and safety-critical systems

Is it advisable to build a safety-critical system with EPICS?

Conventional wisdom says no:

2008: “(EPICS) code is not rigorously audited to the
standards . . . that would be needed (for medical
applications). . . . ”
epics/tech-talk/2008/msg00803.php

2012: “EPICS should never be relied on for safety-critical
operations . . . ”
epics/tech-talk/2012/msg01836.php

But we did anyway — explanation follows.

We did audit some EPICS code – in an innovative way.

Jonathan Jacky, Stefani Banerian, Michael Ernst, Calvin Loncaric, Stuart Pernsteiner, Zach Tatlock, Emina TorlakAutomatic Formal Verification for EPICS

CNTS Control System: History

We have more than thirty years of experience with three
generations of control systems, including two that we developed:

1984 Scanditronix PDP11/RSX/Fortran
with UWMC custom RTP via DECNET

1999 UWMC VME(68k)/VxWorks/C
with UWMC custom Prism RTP via NFS
new functional spec, workflow, UI, hw, sw

2015 UWMC X86/Linux/EPICS
with commercial Pinnacle RTP via DICOM
new hw, sw but very similar functional spec etc.

All use relays, nonprogrammable hardware, or PLCs where feasible.

For prescription data, general purpose computing is unavoidable.

Jonathan Jacky, Stefani Banerian, Michael Ernst, Calvin Loncaric, Stuart Pernsteiner, Zach Tatlock, Emina TorlakAutomatic Formal Verification for EPICS

CNTS Control System: Limit Complexity

Re-implement almost the same functionality as the 1999 system.
But EPICS is more complicated than C on Vxworks. So —

Use a simple configuration:

Therapy control program runs on one soft IOC
Therapy IOC is the only application running on its computer
Therapy IOC does not require any clients or other IOCs to
maintain or achieve safe state

Use a minimal set of EPICS constructs:

Only database records, StreamDevice .proto files, st.cmd
Database DB links only, no CA links
Data flow is all “push”: SCAN PASSIVE, INPx NPP,
OUT PP, FLNK
No SNL, no subroutine records, no custom device support
Only these record types: ai, ao, bi, bo, mbbo, longin, longout,
stringin, stringout, calc, calcout, acalcout, scalcout, fanout,
dfanout, seq, asyn

Jonathan Jacky, Stefani Banerian, Michael Ernst, Calvin Loncaric, Stuart Pernsteiner, Zach Tatlock, Emina TorlakAutomatic Formal Verification for EPICS

Automated Formal Verification

We believe good design and programming practices prevents errors.

Do we have evidence that we have met the safety requirements?

Concern: Reviews are subjective, testing is sampling, so
coverage is incomplete.

Remedy: Use automated formal verification: express
requirements in formal notation, check them against
pertinent source code automatically, so coverage can
be more thorough.

A multi-year research effort by several computer scientists
experienced in formal verification techniques and technology.

Includes review, analysis, and re-implementation of parts of EPICS.

Jonathan Jacky, Stefani Banerian, Michael Ernst, Calvin Loncaric, Stuart Pernsteiner, Zach Tatlock, Emina TorlakAutomatic Formal Verification for EPICS

Automated Formal Verification Tools for EPICS

The project is producing several tools, including:

To check application programs : The Symbolic Evaluator detects
errors in EPICS databases.

To check the EPICS database engine: The Verified Interpreter is
re-implementation of the EPICS database engine,
that checks the standard distribution by differential
testing.

To reduce the EPICS trusted core: The Verified Compiler compiles
an EPICS database to a standalone program,
removing or replacing parts of the EPICS runtime.

Jonathan Jacky, Stefani Banerian, Michael Ernst, Calvin Loncaric, Stuart Pernsteiner, Zach Tatlock, Emina TorlakAutomatic Formal Verification for EPICS

EPICS symbolic evaluator

New tool for finding functional errors in EPICS databases.

Inputs:

EPICS database: .db .substitutions .template st.cmd

Property: assertion relating PVs, for example –

(> (diff gantry-prescribed gantry-actual) gantry-tolerance)
(=> . . . interlock set . . .)

Output:

everything is ok! – property is satisfied – OR . . .

Counterexample: PVs with values that violate property –

Iso:GantryCouch:Gantry:Prescribed.VAL = 312 [64-bit]
Iso:GantryCouch:Gantry:Actual.VAL = 48 [64-bit] . . .

Status:

Working, found a serious error missed by reviews and testing

Still improving feature coverage, user interface, workflow

Jonathan Jacky, Stefani Banerian, Michael Ernst, Calvin Loncaric, Stuart Pernsteiner, Zach Tatlock, Emina TorlakAutomatic Formal Verification for EPICS

EPICS symbolic evaluator (2)

Testing: Try to guess a test case that violates the assertion.
Passing tests are not conclusive.

Symbolic evaluator: Finds the test case (counterexample) that
violates the assertion (property), if there is one.
Verified properties are conclusive.

How it works:

Uses satisfiability checker: Rosette with Z3 SMT solver.

From EPICS database, generate a symbolic program where
every PV value is represented by a formula that includes all its
potential inputs upstream.

Submit this symbolic program (full of formulas) and the
property to check (more formulas) to the SMT solver.

SMT solver searches for values of PVs that satisfy database
formulas but violate property formulas.

Jonathan Jacky, Stefani Banerian, Michael Ernst, Calvin Loncaric, Stuart Pernsteiner, Zach Tatlock, Emina TorlakAutomatic Formal Verification for EPICS

EPICS verified interpreter

Re-implementation of EPICS database engine, made with theorem
prover technology, for checking standard EPICS distribution.

Review Record Processing sections from RRM

Express as definitions for Coq theorem prover

Write interpreter in Coq programming language

Prove interpreter correct with respect to definitions

Extract executable interpreter (in Haskell) from Coq proof

Build harness for differential testing against EPICS distribution

Test cases are randomly generated databases of five records

Status:

Working, over 20 million test cases, dozens of discrepancies

Most discrepancies resolved by rereading docs and EPICS code

Conclusion:

EPICS works like RRM says (except a few corner cases?)

Jonathan Jacky, Stefani Banerian, Michael Ernst, Calvin Loncaric, Stuart Pernsteiner, Zach Tatlock, Emina TorlakAutomatic Formal Verification for EPICS

EPICS verified compiler

New tool for compiling an EPICS database to a standalone
program that runs without (parts of) EPICS, made with verified
compiler technology.

Motivation: Use smaller trusted core (runtime)

Plan:

Start from same semantic definitions as verified interpreter

Use CompCert verified C compiler back end

. . .

Status:

Early development, no compilation yet

Jonathan Jacky, Stefani Banerian, Michael Ernst, Calvin Loncaric, Stuart Pernsteiner, Zach Tatlock, Emina TorlakAutomatic Formal Verification for EPICS

Conclusions

EPICS databases (data flow programs) can be formally verified —

EPICS databases can be used for safety-critical computations —

— When used in our restricted programming style. It ensures:

No unbounded allocation of resources.

Processing of every event terminates.

No loops.

etc. . . .

Similar restrictions are often recommended for safety-critical
programming. EPICS database programs readily support them.

Tools are not ready for general distribution, but we are seeking
collaborators to help use and evaluate them.

Contact jon@uw.edu.
Jonathan Jacky, Stefani Banerian, Michael Ernst, Calvin Loncaric, Stuart Pernsteiner, Zach Tatlock, Emina TorlakAutomatic Formal Verification for EPICS

