

A Case for using EPICSv4 in areaDetector

Bruno Martins

A few interesting EPICSv4 features

● pvData provides structured types
● Scalar types: bool, [u]int[8,16,32,64], float, double,

string
● Normative Types: NTNDArray

– Standardized

● Smart pointers throughout

Why use NTNDArray?

● Well defined normative type, modeled after
areaDetector's NDArray

● A structured record rather than a set of separate
records
– Avoids conversion from NDArray object into waveform +

ai/ao/... records

– Same structure internally and on the wire: easy conversion

Why use NTNDArray?

● Allows for distributed processing
– Multiple instances of areaDetector

● Zero copy if client and server are on the same
machine
– Done transparently

An Implementation
In order to explore some concepts, I did a test
implementation: ADCore + simDetector + NDROI

An Implementation

● New NDArray
– Wraps NTNDArray

– Hides internal data

– pArray->getData() rather than pArray->pData

– Passed around as shared_ptr: NDArrayPtr

An Implementation

● New NDArrayPool
– Doles out NDArrayPtr’s

– Automatic reference counting done by smart pointer

– Automatic reclaims NDArray when not used anymore
● No reserve() and release()

An Implementation

● Producers (drivers and plugins) serve NTNDArrays
● Consumers (typically plugins) monitor NTNDArrays

– Since NTNDArray is the backing structure for the new
NDArray, “conversion” is straightforward

● Transparent zero copy on the same machine

Plugins are clients (monitors)

simDetector

NDROI

ADDriver

NDPlugin

NDROI

NDStats

NDStats

NTNDArray

NTNDArray

NTNDArray

NTNDArray

Machine 1 Machine 2

Other clients can monitor any array

simDetector

NDROI

ADDriver

NDPlugin

NDROI

NDStats

NDStats

NTNDArray

NTNDArray

NTNDArray

NTNDArray

Machine 1 Machine 2

Client

CSS

pvget -m

Why stop there?

Why stop there?

● Right now areaDetector drivers and plugins are
built on top of asynPortDriver
– The parameter library allows for int32, float64 and

string parameters

● Why not build a parameter library with pvData /
pvDatabase?

Why stop there?

● If used, NTNDArray would introduce a dependency
on pvData, pvAccess and normativeTypes anyway
– Until they are merged into EPICS base

● A new parameter library would be able to provide
scalar parameters of every supported scalar type:
– bool, [u]int[8,16,32,64], float, double, string

– New dependency on pvDatabase

Why stop there?

● Actually, parameters could be any structure
supported by pvData!
– An NDArray would be just another parameter, not

special at all

An Implementation: pvPortDriver

● A replacement for asynPortDriver
● Every parameter becomes an entry in the

underlying pvDatabase
● Parameters have a prefix, passed at pvPortDriver's

construction time

// Header File
class ADDriver {
 epics::pvPortDriver::StringParamPtr ADManufacturer;

// Inside ADDriver constructor
ADManufacturer = createParam<string>(“Manufacturer_RBV”);

// Using the parameter
ADManufacturer->put(“Some Manufacturer”);

string manufacturer = ADManufacturer->get();

Parameter type is known at compile time,
not an index into a table

A PV is created. For example:
13SIM1:cam1:Manufacturer_RBV

All monitors will be notified

Value is returned directly

Creating and using parameters

// Header File
class ADDriver {
 epics::pvPortDriver::EnumParamPtr ADStatus;
}

// Inside ADDriver constructor;
vector<string> ADStatusChoices(ADStatusAborted+1);
ADStatusChoices[ADStatusIdle] = “Idle”;
ADStatusChoices[ADStatusAcquire] = “Acquire”;
//...
ADStatusChoices[ADStatusAborted] = “Aborted”;
ADStatus = createEnumParam(“ADStatus”, ADStatusChoices);

// Using the parameter
ADStatus_t status = (ADStatus_t) ADStatus->get();

Creating and using parameters

Downsides

● Asyn is used everywhere, is well established and
well debugged; new code always introduces new
bugs

● Reimplementing all of Asyn's functionalities will
take a lot of work

● If asynPortDriver is replaced, there's no devEpics
equivalent
– No immediate support for V3 databases

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

