Study of hydrogen bonding in energy materials using single crystal neutron diffraction

Xiaoping Wang

Chemical and Engineering Materials Division Neutron Science Directorate Oak Ridge National Laboratory Tennessee, USA

> ORNL/Georgia Tech Joint Workshop 27 January 2016

The ORNL Spallation Neutron Source

Neutron Time-of-Fligh Laue

• Combine de Broglie's equation with Bragg's law

$$\lambda = \frac{h}{mv} = \frac{ht}{m(L_1 + l_2)} = 2d\sin\theta$$

 $1/\lambda_{min}$

$$t = \frac{m}{h}(L_1 + l_2) \times 2d\sin\theta$$

Neutron Time-of-flight Laue (Wavelength-resolved Laue) 3-D Reciprocal Space Mapping

> Pulsed Neutron 60 Hz

The SNS TOPAZ Instrument

Neutron wavelength-resolved Laue 3D Reciprocal space mapping $d_{\rm min} = 0.25 \,{\rm \AA}$ *Q*_{max} ≈ 25 Å⁻¹ Schematic by Mark Overbay

21 Area Detectors Installed in 2015

Crystal Logic Goniostat

Sub-Millimeter Sized Crystals

Diameter: 0.10 – 4.0 mm, Volume: > 0.1 mm³

Multiple Area Detectors

Solid Angle Coverage: 2.4 ster.

Detector 2 θ Coverage: 15.0° - 160°

Sample Environment

CryoStream 700 Plus: 90K – 500K

Actional Laboratory REACTOR SOURCE

Accurate structural parameters from TOPAZ

Acta Crystallographica Section A Foundations and Advances

ISSN 2053-2733

Received 26 February 2014 Accepted 3 July 2014

Accurate atomic displacement parameters from time-of-flight neutron-diffraction data at TOPAZ

Mads R. V. Jørgensen,^a Venkatesha R. Hathwar,^a Mattia Sist,^a Xiaoping Wang,^b Christina M. Hoffmann,^b Alejandro L. Briseno,^c Jacob Overgaard^{a*} and Bo B. Iversen^{a*}

^aCenter for Materials Crystallography, Department of Chemistry and iNano, Aarhus University, Langelandsgade 140, Aarhus C, DK-8000, Denmark, ^bChemical and Engineering Materials Division, BL-12 TOPAZ, Oak Ridge National Laboratory, PO Box 2008 - MS 6475, Oak Ridge, TN 37831, USA, and ^cDepartment of Polymer Science and Engineering, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA. Correspondence e-mail: jacobo@chem.au.dk, bo@chem.au.dk

Accurate atomic displacement parameters (ADPs) are a good indication of high-quality diffraction data. Results from the newly commissioned time-of-flight Laue diffractometer TOPAZ at the SNS are presented. Excellent agreement is found between ADPs derived independently from the neutron and X-ray data emphasizing the high quality of the data from the time-of-flight Laue diffractometer.

© 2014 International Union of Crystallography

Jorgensen, M. R. V.; et. al. Acta Cryst. A 2014, 70, 679

Neutron Single Crystal Crystallography

Complementary to X-ray

- X-ray \rightarrow electron density distribution
- − Neutron → nuclear / magnetic density distribution

X-ray Scattering power ∞ Atomic No.
Hydrogen atoms are not visible
C and N atoms are difficult to locate
Neutron Scattering powder ⊃ Isotope specific
H -3.74 fm, D 6.67 fm
N and Pb atoms are comparable

Notes: Neutron elastic scattering amplitude, known as the scattering length (*fm*), can be positive or negative, depending on whether the neutron-nuclear interaction is attractive or repulsive.

www.ncnr.nist.gov/resources/n-lengths/

Hydrogen bonding in hybrid perovskite CH₃NH₃Pbl₃

- High power conversion efficiencies (> 20%) for solar cell applications
 - Heavy elements with very high X-ray absorption $\mu = 526.82$ cm⁻¹
 - Transparent to neutrons

 $\mu = 0.654 + 0.508\lambda$ cm⁻¹

• Effect of H-bonding on structural phase transitions

Cubic

Cubic

Tetragonal

Orthorhombic

J. Chan, UTD, TOPAZ data

Quantitative analysis of hydrogen bonding

Isotope contrast study

- Nuclear density map [*difference Fourier*] reveals H atom positions

 $[Cu(DF_2)(pyrazine-d_4)_2]PF_6$

Synthetic magnetoelectric multiferroics means to control magnetism

M.R. Fitzsimmons

Thin Films and Nanostructures Group in Quantum Condensed Matter Division

Outline

- Interfaces and mesoscale.
- Neutron scattering Wikisheet.
- Science examples
 - Advantage of bottoms-up synthesis
 - Overcoming magnetic dead layers
 - Magnetic impurities
 - Importance of Kondo effect in spintronics
 - Synthetic multiferroics
 - Superlattices
 - Pillar architecture

Why study interface science?

- Structure and properties of the interface differ from bulk.
- Opportunity to grow compositionally ordered structures.
 - Superconductivity in $La_{2-x}Sr_{x}CuO_{4}$ thin films, not bulk!
 - Harness electrostatic interactions, (La,A)NiO₄ A=Sr, Ca, Ba
- Interfaces automatically break P (parity or space) symmetry.
- Path forward to reconcile conflicts.
 - Robust insulators typically have empty d-bands
 - Magnetic materials typically have ½-filled d-bands
- Applications include:
 - Memory, computing, sensors
 - Permanent magnets
 - Lossless ferroelectrics
 - Thermoelectrics
 - Superconductivity

magnetoelastic

ole of the state o

E.P

BFO/LSMO

example

magnetoelectric

al Laboratory

CFO/BTO example

G,T

A neutron scattering Wikisheet

Sample requirements for thin films: 10 mm x 10 mm x 2-200 nm Very smooth interfaces, $\sigma < 1$ nm Very uniform layer thicknesses, $\delta < 5\%$ M > 10 emu/cm³ in sample plane

What do I learn?

Nuclear and (vector) M (parallel to sample plane) depth profile 1-2 nm resolution. Variation of moment density in absolute units.

Small angle neutron scattering

Sample requirements for thin films: 10 mm x 10 mm x ~20 nm Samples can be stacked provided substrates are "transparent". M > 10 emu/cm³

What do I learn?

Correlation between regions of different nuclear and vector M (in any direction) scattering length densities in range of 10-300 nm. Variation of moment density in absolute units.

K **KIDGE**

National Laboratory REACTOR

Magnetic dead layer problem

Polarization of spin current degraded by: 1) Spin flip scattering 2) Injection of

High R

Goal: <1 pJ per transition (spin torque presently 5pJ/transition)

wrong spins

Magnetic dead layer problem

Polarization of spin current
degraded by:
1) Spin flip scattering
2) Injection of

Goal: <1 pJ per transition (spin torque presently 5pJ/transition)

wrong spins

Magnetic dead layer problem solved

- La_{0.7}Sr_{0.3}MnO₃ optimal composition for FM.
- (001) STO is non-polar.
- (001) La_{0.7}Sr_{0.3}O has +2/3 charge.
- Polar discontinuity believed responsible for undesirable structure, e.g., magnetic dead layer and roughness.
- Hypothesis: Mitigate problem with layer-by-layer growth.
- (001) La_{0.3}Sr_{0.7}O has +1/3 charge.

M. Huijben, Y. Liu, H. Boschker, V. Lauter, R. Egoavil, J. Verbeeck, S.G.E. te Velthuis. G. Rijinders, G. Koster, *Advanced Materials Interfaces*, **2**, 3, 1400416, (2015).

Synthetic multiferroic: We created a magnetic handle and then used it.

Can a synthetic magnetoelectric multiferroic be realized at 300K?

- Fabricate [BFO₅/LSMO₂₀]₉ superlattice in Ho Nyung Lee's (MSTD) lab.
- $T_c \sim 300 + K$ achieved.
- Neutron experiment completed 12/15.
- Electronic measurements beginning.

Small angle neutron scattering to probe E-field dependence of M

W.C. Chen *et al*, Physica B **404**, 2663 (2009); K.L. Krycka *et al*, Physica B **404**, 2561 (2009) and http://www.ncnr.nist.gov/equipment/he3nsf/index.html

- Used polarized neutron beam
- H parallel to neutron beam (not as shown)
- Saturated at LANL, then measured at NIST

• 300 K

- H = +70 and-5000 Oe
- E = 0 and 700 kV/cm

HIGH FLUX ISOTOPE

National Laboratory | REACTOR

Raw data pose a quandary—electric field *increases* magnetization.

- Integrate region of interest
- Calculate spin asymmetry

Combining techniques to extract M.

ATION

RON

CE

12 US Depai

E-field affects magnetization reversal

- E-field increases M by ~4%
 - at H/H $_{\rm c} \sim 0.5$
 - E = 700 kV/cm
 - M from 246 \pm 4 to 257 \pm 4 kA/m
- Reversal may start inside the pillar.
 - $M(H/H_c \sim 0.5) = 0.7 M_s$
- Interface magnetism somewhat pinned.
- Weigand effect* *H.E. Burke, Handbook of Magnetic Phenomena 13 US Department of Energy Office of Basic Energy Sciences

National Laboratory REACTOR

Near future outlook for interface and mesoscale science

- Neutron scattering is a powerful tool to solve problems encountered in development of novel materials.
 - Or, applied to model systems representative of nanostructures in devices.
 - Especially true of magnetic materials.
- Pressure (1+ GPa) studies with reflectometry.
- 5 Tesla strong fields for reflectometry (11 Tesla for SANS).
- Combinations of E, H, P and T that are dynamic, in operando.

No-classical bonding of a side-on H₂ ligand

- Open-shell Co-H2 moiety in (TPB)Co(H₂)
 - Putative catalytic intermediates in Co-catalyzed proton reduction reactions
- Single crystal neutron diffraction structure of Co-H₂
 - A side-on H_2 ligand with H–H distance of 0.834(6) Å.

Neutron structure validates predictions that distortions of the complex in the solid state quenches free-rotor behavior of the H_2 ligand.

W. A. Gunderson, et. al. J. Am. Chem. Soc. 2014, 136, 14998-15009.

Neutron structure of $Co-H_2$ showing the disordered H_2 ligand in the solid state

Polyhydrido Nanocluster with Intrinsic Chirality

The induction of chirality in metal hydrides is of added value because of the importance of such chiral complexes for asymmetric catalysis.

 $\begin{array}{ll} C_{81}H_{172}Cu_{20}O_{18}P_9Se_{18}\\ Space group R-3\\ a=18.3282(2) & \text{\AA}\\ c=74.7517(15) & \text{\AA}\\ V=21746.6(6) & \text{\AA}^3\\ R_1 \ (\text{obs})=0.0672 \end{array}$

Hydrogenated sample

54% Hydrogen contents by atom.
Well resolved hydrogen atom positions
10 Hydrides as capping μ₃-H ligands
1 Hydride as a μ₅-H ligand in trigonalbipyramidal cavity

Crystal Structure of Cu₂₀H₁₁{Se₂P(OⁱPr)₂}₉ (Cu cyan, Hydride red)

Dhayal, R. S., et. al, Angew. Chem. Int. Ed. 2015, 54, 13604.

Structural study of H-bond transformation

- Hydrogen fuel cell Convert chemical bond to electricity
 - Need a viable electrocatalyst (not Pt)
 - Iron-based molecular electrocatalyst

Electrocatalyst from earth abundant elements

- Neutron structural study of an iron-based electrocatalyst
 - Hydrogen bonding related to H₂ oxidation
 Heterolytic cleavage of H–H bond
 - Hydrogen bonding related to H₂ production

Heterocoupling of a proton and a hydride

High resolution neutron single crystal diffraction

Pt catalyst 0.125 - 0.30 mg/cm²

National Laboratory REACTOR

SOURCE

Converts chemical energy into electricity

Hydrogenase

Catalyzes the reversible oxidation of molecular hydrogen

The cleavage of H-H bonds cannot be readily observed by X-rays

Lubitz, W. *et. al. Chem. Rev.* **2014,** 114, 4081 Ogata, H.; Nishikawa, K.; Lubitz, W. *Nature* **2015**, *520*, 571

Electrocatalysts Using Earth Abundant Elements

The Elements According to Relative Abundance

Roughly, the size of an element's own niche ("I almost wrote square") is proportioned to its abundance on Earth's surface, and in addition, certain chemical similarities (e.g., Be and AI, or B and Si) are sug-

gested by the positioning of neighbors. The chart emphasizes that in real life a chemist will probably meet O, Si, Al, . . . and that he better do something about it. Periodic tables based upon elemental abundance would, of course, vary from planet to planet. . . W.F.S.

NOTE: TO ACCOMMODATE ALL ELEMENTS SOME DISTORTIONS WERE NECESSARY, FOR EXAMPLE SOME ELEMENTS DO NOT OCCUR NATURALLY.

Hydrogen Oxidation Reaction

Three steps

- Reaction of H_2 with the metal complex
- Heterolytic cleavage of H₂ into a proton and a hydride ion
- Release of the two protons and two electrons

$H_2 \rightarrow (H^+ + H^-) \rightarrow 2H^+ + 2e$

Hydrogen Oxidation (Heterolytic Cleavage of H–H Bond)

\bigcirc Pendant amine as proton relay

Mimic the second coordination sphere at the enzyme active site

SOURCE

Design a Functional Electrocatalyst

Facilitate proton-coupled electron transfer

Bullock, R. M.; Appel, A. M.; Helm, M. L. Chem. Commun. 2014, 50, 3125

DFT Energy landscape

Model electrocatalyst for H₂ oxidation

Lower the activation barrier:

Promote **Heterolytic** cleavage of the H—H bond into a proton and a hydride

Liu, T. B.; DuBois, D. L.; Bullock, R. M. Nat. Chem. 2013, 5, 228

The postulated "dihydrogen" bond

 Non-covalent interaction between hydrogen atoms with partial negative and positive charges

 $\mathsf{M}-\mathsf{H}^{\delta-}\cdots\mathsf{H}^{\delta+}-\mathsf{X}$

Hydride as proton acceptor

Custelcean, R.; Jackson, J. E. Chem. Rev. 2001, 101, 1963

Neutron single crystal diffraction

• Capture the structure details of the electrocatalyst in action

- The electrocatalyst is at its intermediate state
- Hydrogenated sample (39% H by atom)
- Locate hydrogen atoms at *sub-atomic resolution*

Locate hydrides and protons from singlecrystal neutron diffraction

Sub-atomic resolution

H^{δ+}····H ^{δ-} **1.489(10)** Å

Neutron structure - Dihydrogen bond

$H_2 \rightarrow (H^+ + H^-) \rightarrow 2H^+ + 2e$

Hydrogen Oxidation (Heterolytic Cleavage of H–H Bond)

$2H^+ + 2e \rightarrow (H^+ + H^-) \rightarrow H_2$

Hydrogen Production (Heterocoupling of a proton and a hydride)

Bullock, R. M.; Helm, M. L. Acc. Chem. Res. 2015, 48, 2017

Transfer of H atoms in the solid state

Transfer of H atoms in SCS reaction

Locating Hydrogen atoms in [1-Fe(OH₂)N]⁺

Locating Hydrogen atoms in [1-Fe(OH₂)N]⁺

wR2 = 0.1245 before cycle 8 for 13638 data and 0 / 1569 parameters GooF = S = 1.022; Restrained GooF = 1.024 for 109 restraints R1 = 0.0721 for 11858 Fo > 4sig(Fo) and 0.0777 for all 13638 data wR2 = 0.1245, GooF = S = 1.022, Restrained GooF = 1.024 for all data R1 = 0.0717 for 5831 unique reflections after merging for Fourier Highest peak 0.71 at 0.3693 0.8773 0.4887 [0.14 A from C10] Deepest hole -0.71 at 0.1124 0.8352 0.2988 [0.42 A from H9A]

National Laboratory REACTOR

Comparison of Neutron & X-ray structures

Reaction pathway for H₂ production

Spontaneous combination of a proton with a hydride

 $H_2O + [1-FeH---HN]^+ \longrightarrow H_2 + [1-Fe(OH_2)N]^+$

Hetero-coupling of a proton and a hydride

Η,

H* + H* ____

Conclusions

Neutron single crystal diffraction confirmed:

A strong Fe– $H^{\delta-\dots\delta+}H$ –N "dihydrogen bond" exists in the intermediate state of an iron-based molecular electrocatalyst.

Water assisted hetero-coupling of a proton and a hydride leads to hydrogen production.

The water adduct of the iron complex is stabilized by a conventional hydrogen bond.

Angew. Chem. Int. Ed. 2014, 53, 5300 - 5304

B Heterolytic H₂ Cleavage Very Important Paper

DOI: 10.1002/anie.201402090

Heterolytic Cleavage of Hydrogen by an Iron Hydrogenase Model: An Fe-H···H-N Dihydrogen Bond Characterized by Neutron Diffraction**

Tianbiao Liu,* Xiaoping Wang, Christina Hoffmann, Daniel L. DuBois, and R. Morris Bullock*

Summary

The SNS TOPAZ instrument opened a new horizon for high resolution structural study of materials that would not be possible with X-rays.

Potential applications of TOPAZ

Study the chemical structure and bonding of molecules and ions with their surroundings involving light elements;

Resolve the site occupancy associated with neighboring elements;

Solve and refine magnetic structures;

Probe structural modulation originated from nuclear/magnetic phase transitions;

3D Q space mapping and parametric studies using neutron event data ...

Acknowledgements

Dr. Tianbiao Liu Dr. R. Morris Bullock

Proudly Operated by **Battelle** Since 1965

Center for MOLECULAR ELECTROCATALYSIS

Dr. Christina Hoffmann Helen He Matthew Frost

The neutron single crystal study at ORNL's Spallation Neutron Source TOPAZ instrument was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy.

Universal characteristics of water dynamics in restricted geometries investigated with neutron scattering

Chemical & Engineering Materials Division

Oak Ridge National Laboratory

ORNL/Georgia Tech Workshop 2016 January 27, 2016

Motivations: recent MD simulations

ARTICLE

Received 11 Sep 2013 | Accepted 5 Mar 2014 | Published 3 Apr 2014

DOI: 10.1038/ncomms4565 OPEN

Scaling behaviour for the water transport in nanoconfined geometries

Objectives

- Verify/test proposed law against exp'ts
- Identify common characteristics/trends
- Develop predictive models
- Validate models using recent measurements

Challenge: Disentangling variables???

4 Managed by UT-Battelle for the U.S. Department of Energy

^{Presentation_name}N.C. Osti *et al.* J. Chem. Phys. **465-466**, 1-8 (2016)

Hydration

M.-C. Bellissent-FuneL, S. H. Chen, and J.-M. Zanotti, Physical Review E, 1995, Volume 51, Number 5

Managed by UT-Battelle 6

Takahara et al., J. Phys. Chem. B, Vol. 109, No. 22, 2005 n_name

Varying Confinement Size?

Confinement Geometry/Morphology

$$\Phi = (R_{fill}/R)$$
$$\Phi_c = d_c/R$$

)AK JDGE

Geometry	$0 < \Phi_{fill} \le \Phi_c$	$\Phi_c \le \Phi_{fill} \le 1$
Slit	1	$\Phi_c \Phi^{-1}$
Cylinder	1	$(2\Phi_c - \Phi_c^2) (2\Phi - \Phi^2)^{-1}$
Sphere	1	$(3\Phi_c - 3\Phi_c^2 + \Phi_c^3)(3\Phi - 3\Phi^2 + \Phi^3)^{-1}$

Predictive models consistent with observations 12

In summary

- Scaling law verified for water in a wide range of systems
- Common attributes
 - Increasing hydration, θ decreases
 - Conf. size increases, θ decreases
 - 3D confinement \rightarrow larger θ
 - Hydrophilic systems, D_c~0

Parameters for FSM silica determined

10 Managed by UT-Battelle for the U.S. Department of Energy

Presentation_name

Back to Quasi-Elastic Neutron Scattering (QENS)

- **Biology** –proteins, hydration water..
- **Chemistry** catalysis, polymers, complex fluids, ionic liquids ..
- Condensed Matter & Materials
 science –quantum fluids, spin ice...

Presentation name

QENS – *unique* probe for proton dynamics

Scattering event

- Momentum transfer $Q \Rightarrow \vec{Q}^2 = \vec{k_j}^2 + \vec{k_f}^2 2\vec{k_i}\vec{k_f}\cos\theta$
- Energy transfer $E = \hbar \omega \Rightarrow E = E_i E_f$
- $S(\mathbf{Q}, \omega)$, Scattering function

Advantages of QENS

- Takes advantage of H/D exchange
- Diffusion Type (e.g. translational or rotational)
- Length scale (localized or long ranged)
- Relaxation Times
- Activation Energies ...

for the U.S. Department of Energy

Recent upgrades to BASIS – to enable *new science*

Si 111		
Elastic energy	2.08 meV	
Bandwidth	±250 µeV	
Resolution (elastic)	3.5 <i>µ</i> eV	
Q range (elastic)	0.2 Å ⁻¹ < Q < 2.0 Å ⁻¹	

Si 311 (upgrade)			
Elastic energy	7.64 meV		
Bandwidth	±1700 µeV		
Resolution (elastic)	10 <i>µ</i> eV		
Q range (elastic)	0.38 Å ⁻¹ < Q < 3.8 Å ⁻¹		

Added capabilities will enable

- New experimental studies (Non-hydrogenous, magnetic materials etc..)
- Simultaneous measurements of faster and slower dynamics (broadband spectroscopy)
- Higher Q => accurate geometrical information

13 Managed by UT-Battelle for the U.S. Department of Energy NATIONAL CAK

Presentation_name

Examples: INS/Quantum fluids studies

Observed P-R dispersion in Liquid 4He

Presentation_name

tional Laborator

Examples: INS / Rotational tunneling

Examples: Ferroelectric materials

Pramanick et al., Phys. Rev. B. 92, 174103 (2015).

16 Managed by UT-Battelle for the U.S. Department of Energy

Jalarvo et al., App. Phys. Lett. **107**, 082907 (2015) Presentation name

Examples: QENS/Protein dynamics

Examples: QENS/Hydration water studies

similar mechanism

ENTROPIC ORIGIN OF ELASTIN'S ELASTICITY

Presentation S. Perticaroli et al. J. Phys. Chem. Lett., 6, 4018 (2015).

2°COAK

18 Managed by UT-Battelle for the U.S. Department of Energy

Acknowledgments

Alexandra Cote (Summer intern)

Naresh Osti (Postdoc)

Eugene Mamontov

T. Ramirez-Cuesta

Qiu Zhang

Hugh O'Neill

Abhijit Pramanick

Many others at ORNL...

Funding: Work at **BASIS** is supported by DOE BES Partial support from FIRST EFRC, DOE BES

Macromolecular Neutron Crystallography

Elusive species, protonation states, and proton transfer

Andrey Kovalevsky

R&D Scientist Biology and Soft Matter Division Oak Ridge National Laboratory Oak Ridge, TN

ORNL is managed by UT-Battelle for the US Department of Energy

X-rays reveal structural details

Neutrons reveal atomic details

50 mm³ first instrument at BNL D19 at ILL

>1 mm³ PCS at LANSCE LADI at ILL

> ≤0.2 mm³ IMAGINE, MaNDi at ORNL y Sciences LADI-III at ILL iBIX at JPARC

4 US Department of Energy Office of Basic Energy Sciences Review of Neutron Sciences

1.2mm 0.26mm 0.77mm **CAK RIDGE** National Laboratory SPALLATION NEUTRON SOURCE

~2025

≤**0.01** mm³

MX at ESS

EWALD at ORNL

IMAGINE Beamline - Quasi-Laue single crystal neutron diffractometer

Wavelength range:

Applications

- Macromolecular structure-function
- Supramolecular crystallography
- Materials chemistry

US Department of Energy Office of Basic Energy Sciences Review of Neutron Sciences

2.0 Å - 3.0 Å 2.78 Å - 3.0 Å 3.33 Å - 4.0 Å 2.0 Å - 4.0 Å 2.78 Å - 4.0 Å 3.33 Å - 4.5 Å 2.0 Å - 4.5 Å 2.78 Å - 4.5 Å Flux: ~3 x 10⁶ n s⁻¹ cm⁻² Beam size: 2 x 3.5 mm² OAK RIDGE HIGH FLUX SPALLATION NEUTRON SOURCE

<u>MaNDi beamline</u> - The <u>Macromolecular Neutron</u> <u>Di</u>ffractometer

Years Variable of Applied CRYSTALLOGRAPHY Variable of Applied CRYSTALLOGRAPHY Variable of Applied CRYSTALLOGRAPHY

38 SNS Anger Cameras now surround the sample position giving 4sr detector coverage

The MaNDi Team

MaNDi is a Time of Flight wavelength resolved Laue diffractometer designed for flexibility and high signal to noise data collection. Several Key instrumental parameters can be adjusted to match the parameters of the sample.

D-Xylose Isomerase – aldo-keto sugar conversion 1 HO 1 0 н 1 CH₂OH он_о OH OH HO HO OH Ю OH 3 DН HC ŊН ЮH НÓ 5 α -D-xylose **D-xylose D-xvlulose** α -D-xylulose β-D-lyxose (linear form) (linear form) (xylopyranose) (xylulofuranose) 1_H HO 1 HO 1 HO CH₂OH 4 OH OH OH он но HO OH OH ЮH 3 ЮΗ HO/// HO, ΟH ÓН β-L-arabinose L-arabinose L-ribulose β –**L**-ribulose β-L-ribose (linear form) (linear form) (arabinopyranose) (ribulofuranose) ribopyranose) isomerization epimerization

In total, 9 neutron structures have been obtained.

D-xylose isomerase

Active homotetramer

Highly stereospecific: O1 in axial position of a sugar ring

Catalized reactions: xylose-to-xylulose glucose-to-fructose arabinose-to-ribulose

Activators: Mg²⁺, Co²⁺, Mn²⁺ Inhibitors: most transition metals, polyalcohols, acidic pH (< 6)

Joint X-ray/Neutron crystallography:

Snapshots of D-xylose isomerase-catalyzed isomerization reaction

Catalytic water stays as H₂O

Ring opening:

what deprotonates O1? – O1 is deprotonated by a water					
	molecule and H is transferred to Lys289				
what protonates O5?	 O5 remains deprotonated in 				
	the crystal, His54 keeps both H atoms				

	pH = 7.7				
XI variant	k _{cat} , s ⁻¹	K _M , mM	$k_{cat}/K_M, M^{-1}s^{-1}$		
rWT-His ₆	1.22 ± 0.02	5.0 ± 0.2	240		
Lys289His	1.38 ± 0.07	4.3 ± 0.3	321		
Lys289Glu	0.51 ± 0.04	8 ± 1	64		

Joint X-ray/Neutron crystallography:

Snapshots of D-xylose isomerase-catalyzed isomerization reaction

Catalytic water is deprotonated Metal movement towards substrate may be crucial

Isomerization:

what deprotonates O2? - unclear what protonates O1? - catalytic H₂O may be the proton donor; it is converted to OH⁻ which protonation event occurs first? - unclear is it a base or acid hydrolysis? - unclear

US Department of Energy Office of Basic Energy Sciences Review of Neutron Sciences

Kovalevsky et al. (2008) Biochemistry 47, 7595-7597.

Joint X-ray/Neutron crystallography: D₃O⁺ exchanges roles with D⁺ at metal site M1

		pH = 7.7		pH = 5.8			
XI variant	k _{cat} , s ⁻¹	K _M , mM	k_{cat}/K_M , M ⁻¹ s ⁻¹	k _{cat} , s⁻¹	K _M , mM	$k_{cat}/K_{M}, M^{-1}s^{-1}$	
Native WT	5.52 ± 0.05	3.0 ± 0.1	1840	0.41 ± 0.02	83 ± 10	4.9	
rWT-His ₆	1.22 ± 0.02	5.0 ± 0.2	240	0.31 ± 0.01	33 ± 3	9.4	
rWT-His ₁₂	0.80 ± 0.01	3.8 ± 0.3	211	0.140 ± 0.003	14 ± 1	10	
Asn215Asp	2.3 ± 0.1	3.4 ± 0.1	676	0.19 ± 0.01	10 ± 1	19	
Lys289His	1.38 ± 0.07	4.3 ± 0.3	321	0.064 ± 0.007	27 ± 2	2.4	
Lys289Glu	0.51 ± 0.04	8 ± 1	64	0.070 ± 0.002	37 ± 4	1.9	
Asp287Asn		no activity			no activity		

Kovalevsky et al., Angew. Chem. -Int. Ed. 50, 7520-7523 (2011)

Waltman et al., PEDS 27, 59-64 (2014)

Xylanase glycoside hydrolysis

¹² Review of Neutron Sciences

Retaining glycoside hydrolase: Family 11 xylanase with a "jelly roll" fold

Glu177 – general acid/base catalyst; Glu86 – nucleophile.

Wan, et al., Acta Crystallogr. 2014, D70, 11-23.

<u>We are studying</u> a retaining β -GH endo-1,4- β -xylanase (<u>XynII</u>) from filamentous fungus Trichoderma reseei in an effort to understand its catalytic mechanism in depth as a paradigm for all retaining β -GH enzymes. National Laboratory REACTOR

Review of Neutron Sciences

XynII at pH 5.8: No Glu177 protonation, normal hydrogen bonding around the catalytic residues

US Department of Energy Office of Basic Energy Sciences 14 **Review of Neutron Sciences**

A.Y. Kovalevsky et al. (2011) Acta Crystallogr. F67, 283-286.

HIGH FLUX ISOTOPE

NEUTRON

SOURCE

OAK RIDGE HIGH FLUX National Laboratory REACTOR

Family 11 xylanases: Early X-ray work showed Glu177's side chain can adopt two conformations near the physiological pH for the enzyme

XynII at three different pH: higher pH induces 'low-barrier' hydrogen bond, whereas low pH

'LBHB'

Conformational change of Glu177 and its protonation

Q. Wan et al. (2015) Proc. Natl. Acad. Sci. U.S.A. 112, 12384-12389.

Proposed cycling of the general acid between two conformations controlling pK_a and protonation states in GH11 enzymes

HIV-1 protease (PR)

- 99-amino acid homodimeric PR processes Gag and Gag-Pol polyproteins into viral enzymes, structural proteins;
- aspartic proteases catalyze hydrolysis of the peptide bond by utilizing two closely co-located aspartic acid (Asp) residues;
- catalytic aspartic dyad has to be mono-protonated;
- ✤ proton transfer events are key in the catalytic mechanism.

US Department of Energy Office of Basic Energy Sciences
 Review of Neutron Sciences

Visualizing H bonding in protease-amprenavir complex

Accurate positions of protons in the PR catalytic site

20

pH drop in crystal leads to protonation of 4 surface residues

Asp30, Asp30', Glu34, Glu34', located 11-14 Å away from the catalytic site, are protonated at lower pH, significantly changing the enzyme charge.

US Department of Energy Office of Basic Energy Sciences Review of Neutron Sciences

Long-range electrostatics-induced proton transfer

QM/MM calculations

NEUTRON

SOURCE

Neutron crystallography of nucleic acids enabled by Se derivatization

Acknowledgements

ESS

S. Zoe Fisher

Lund, Sweden

SPALLATION

SOURCE

BSMD Oksana Gerlits Amit Das Qun Wan Kevin Weiss Leighton Coates

EUROPEAN

<u>IMAGINE:</u> Flora Meilleur Laskeisha Walker

<u>Center for Mol. Biophys.:</u> Troy Wymore Jerry Parks Jeremy Smith

<u>GSU:</u> Chen-Hsiang (Brian) Shen Irene Weber

<u>Purdue University:</u> Arun Ghosh

US Department of Energy Office of Basic Energy Sciences Review of Neutron Sciences

LANL: Mary Jo Waltman Matt Challacombe Nick Bock

<u>ILL:</u> Matthew Blakeley Trevor Forsyth Sax Mason

<u>ISIS:</u> David Keen Oxfordshire, UK

FRM-II: Andreas Ostermann Tobias Schrader Munich, Germany

Lujan Center LANSCE Los Alamos, NM

> HIGH FLUX ISOTOPE

Funding:

LANL LDRD ORNL LDRD DOE-BER DOE-BES User Program

National Laboratory REACTOR

Small-Angle Neutron Scattering for Biomembranes

William T. Heller, Ph.D.

EQ-SANS Lead Instrument Scientist Oak Ridge National Laboratory

ORNL-Georgia Tech Joint Workshop in Neutron Science and Scattering Georgia Tech January 27, 2016

ORNL is managed by UT-Battelle for the US Department of Energy

Small-angle Scattering

- A structural technique
 - Broadly applicable to almost any kind of material
 - •Broadly applicable to all states of matter
 - •Size
 - Shape
 - Correlations
 - Void fraction
 - Fractal dimension
 - Aggregation behavior

The list goes on...

SAS is a characterization tool for bulk materials that has proven indispensable for the Polymer and Materials Sciences

SAS is also well-suited to studies of biological materials

Small-angle Scattering

Small-angle scattering is a diffraction method

3 Managed by UT-Battelle for the U.S. Department of Energy

SAS Instrumentation

SAS instruments are conceptually simple

Source: x-ray generator, synchrotron, spallation source or reactor

Monochromator/Chopper: Defines wavelength(s)

Collimating Optics: Defines the angular divergence of the beam

Determines the maximum size probed

Detector: Collects the radiation scattered by the sample

Large detectors provide better angular coverage

Small-angle Scattering

 When applied to problems in structural biology, SAS provides

•Structural information on macromolecular complexes and systems not amenable to other techniques

- •Traditional methods of data interpretation provide structural insight at the molecular (shape) level
- •Does not provide structural information at the same level of detail as crystallography and NMR

Why Neutrons for Biomaterials?

- Nondestructive (no radiation damage)
- Sensitive to hydrogen and deuterium

- Water
- Hydrogenated Protein
- •50% Deuterated Protein
- •100% Deuterated Protein
- •DNA
- Phospholipid

Selective deuterium labeling makes it possible to highlight features in complex structures

Great for problems from biology!

The Cell Membrane

Pulled from <u>www.colorado.edu</u> via google.com

The membrane is a heterogeneous mixture of lipids, proteins and other molecules that spans the molecular and mesoscopic length scales

Structure and function derive from the interactions between the constituents of its tightly-regulated composition

The Cell Membrane

The structure of the assembly is driven by a competition between the various energy costs including electrostatic and hydrophobic Interactions

Hydrophobic interactions play a large role in determining the structure of the membrane and the functional structures within it

- Between the various components and water
- Between the various components within the membrane

Light Harvesting Complex II

The structure of the LHC-II in complex with the detergent was studied by SANS

The detergent solubilized LHC-II retains its native structure with an irregular detergent 'belt'

9 Presentation_name

Cardoso, M.B., et al (2009) J. Phys. Chem. B 113: 16377

Bacterial Photosystem-I

The structure of the trimeric PS-I from T. elongatus also retains its native structure in detergent solution

Again, there is an irregular detergent 'belt'

SPALLATION NEUTRON

LOAK RIDGE

National Laboratory SOURCE

10 Presentation_name

Le, R. K., et al (2014) Arch. Biochem. Biophys. 550-551: 50

Sindbis Virus

Compared mammalian- and insect-grown virions

Still infectious after measurements!

<u>Sindbis – Arthropod borne vir</u>us

Paredes A.M. et al. Virology (2004), 324, 373

The lipid layer of the mammalian virus has a lower scattering length density than the insect form - cholesterol

National Laboratory | SOURCE

11 Presentation_name

He, L. L., et al. J. Virology 84: 5270-5276 (2010)

A real membrane is a complex mixture, which makes it difficult to study the physics that govern how composition gives rise to structure

Membrane proteins are difficult to work with and obtain in quantities well-suited to neutron scattering

> Use simplified model systems

Membrane Biophysics

Synthetic lipids afford chemical uniformity and specific deuterium labeling

- Phospholipids
- Cholesterol

Membrane-active peptides (MAPs) interact with the lipid bilayer rather than a protein target

- Antimicrobial peptides (e.g. magainin)
- Venom peptides (e.g. melittin)

Membrane Biophysics

MAPs, such as alamethicin and melittin first make contact with a cell at the membrane surface

Alamethicin

- 20 amino acids
- Single negative charge at neutral pH

Forms barrel-

stave pores

Melittin

- 26 amino acids
- Five positive charges at neutral pH
- Forms toroidal pores

Does a MAP change the organization of specific lipids in a mixed-composition membrane?

Headgroup-Specific Interactions

Charged lipids are vital components of cell membranes

Do MAPs alter how charged lipids are distributed in PC/PG lipid bilayer vesicles?

- Chain-perdeuterated DMPC and DMPG
 - Remove sensitivity to chain composition
 - Provide sensitivity to what is where

15 Presentation_name

Qian, S. and Heller, W. T. J. Phys. Chem. B 115: 9831-9837 (2011) National Laboratory

Headgroup-Specific Interactions

Headgroup-Specific Interactions

Alamethicin and Melittin impact the bilayer thickness differently

P/L			Lipid only	Ala 1/500	Ala 1/200	Ala 1/50	Mel 1/1000	Mel 1/500	Mel 1/200
Inner leaflet	H e a group(Å)	d	8.10	8.10	8.0	7.84	8.10	8.10	8.20
	Chain(Å)		14.20	14.10	14.08	13.60	14.20	14.10	15.90
Outer leaflet	Chain(Å)		14.20	14.10	14.10	13.50	14.20	13.90	16.00
	H e a group(Å)	d	8.10	8.15	8.00	7.86	8.10	8.10	8.30
Total Shell Thic	kness (Å)		44.60	44.45	44.18	42.80	44.60	44.20	48.40

SPALLATION NEUTRON SOURCE

Hydrophobic matching schematic of the alamethicin crystal structure in bilayers of various thicknesses PDB ID: 1AMT; Fox and Richards (1982) *Nature* **300**, 325-330.

Qian, S. and Heller, W. T. J. Phys. Chem. B **115**: 9831-9837 (2011) National Laboratory
Headgroup-Specific Interactions

Model the distribution of what is in each of the 4 layers of the model as well as the thicknesses of the layers

	P/L	Peptide insertion ratio (%)	DMPC in the inner leaflet (%)
Lipid only	0	0	76 ± 2
Alamethicin	1/500	0	78 ± 2
	1/200	50 ± 10	79 ± 2
	1/50	90 ± 10	85 ± 2
Melittin	1/1000	0	75 ± 2
	1/500	35 ± 15	79 ± 2
	1/200	60 ± 15	89 ± 2

A combination of electrostatics and peptideinduced curvature effects

18 Presentation_name

Qian, S. and Heller, W. T. J. Phys. Chem. B 115: 9831-9837 (2011)

Acknowledgements

A portion of this research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy. Research at ORNL's Center for Structural Molecular Biology (FWP ERKP291) was supported by the U.S. Department of Energy's Office of Biological and Environmental Research. Research at Oak Ridge National Laboratory's High Flux Isotope Reactor and Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy.

Polymer and Surfactant Self-Assemblies

Changwoo Do

EQ-SANS Instrument Scientist Structure and Dynamics of Soft Matter Group Biology and Soft Matter Division Oak Ridge National Laboratory

> ORNL-Georgia Tech Joint Workshop in Neutron Science and Scattering January 27, 2016

Nanofabrication via Self-Assembly

Self-Assembly: Spontaneous organization of molecular units into ordered structures

P. Innocenzi et al., Chem. Mater. 23 (2011) 2501-2509

Hebrid film/

HIGH FLUX

ISOTOPE

National Laboratory | REACTOR

A variety of

SPALLATION

NEUTRON

Recent Research at EQ-SANS

Understanding Li-batteries *Phys. Rev. Lett.* **2013**, 111, 018301

PEO-PPO-PEO Composite Hydrogel

Biomacromolecules. 2013, 14, 4456

PEM Flow Plates Oxygen

Proton Exchange Membranes Polym. Eng. Sci. **2014**, 54, 2215 Self-assembled morphology *Macromolecules*. **2014**, 47, 5808

Capabilities/performance

- 0.002 < Q < 1.4 Å⁻¹
- Largest dynamic Q-range for a SANS instrument at ORNL
- Measurement times as short as minutes for strongly scattering samples

Ionic liquid in a hierarchical structure *Chem. Mater.* **2014**, 26, 1144

Structure-Power Conversion Efficiency Nanoscale, **2015**, DOI: 10.1039/c5nr03332b

Molecular self-assembly of conjugate polymer with surfactant *Nanoscale*, **2015**, Advance Article

National Laboratory REACTOR

ISOTOPE

NEUTRON

Examples of SANS Study

Research Examples

- Sub-domain structure
- Water distribution
- Nano-building block
- Surfactant aggregates

Subdomain Structures of Ternary System

Subdomain Structures of Ternary System

□ Isotope subsitution: Various mixtures of H2O:D2O for water

National Laboratory REACTOR

Subdomain Structures of Ternary System

 $t_w = 5.7 \pm 0.06 \text{ Å}$

 $t_{EO} = 2.2 \pm 0.01 \text{ Å}$

 $t_{PO} = 4.5 \pm 0.01 \text{ Å}$

lamellar phase 10⁸ 10⁷ 60 wt% scattering intensity (cm⁻¹) 10⁶ 50 wt% 10⁵ 40 wt% **10**⁴ 30 wt% 10³ 20 wt% 10² 10 wt% **10**¹ 0 wt% 10⁰ 0.00 0.04 0.08 0.12 0.16 q (Å⁻¹)

SANS Results

Proposed Model

revealed by contrast-varied SANS

OAK RIDGE HIGH FLUX ISOTOPE REACTOR

HIGH FLUX ISOTOPE

SPALLATION NEUTRON

Distribution of Water Molecules in Dendrimers

Dendrimers: Highly branched dendritic macromolecules

- □ Structural duality: particle-like resemblance & flexible, porous polymeric architecture
- Polyamidoamine dendrimers (PAMAM)
 - Ethylenediamine cores
 - Polyamidoamino units
- Water distribution inside dendrimers determines both structure and dynamics of molecules

Contrast varied SANS using mixtures of H2O and D2O

Dense-core molecular density profile

□ Intra-molecular porosity is quantified

Smart Nano-sized Building Block

Polymer + Carbon nanotube (CNT) for functional materials

Combination of their advantages complementary to each other

[CNTs]

- o Remarkable physical properties
 - \checkmark High thermal stability / tensile strength / elasticity
 - \checkmark Extraordinary electrical and thermal conductivity
- o Low percolation threshold
 - ✓ Unusual length-to-diameter ratio
- o Poor solubility in commonly used solvents

[Pluronic Block copolymers]

- o Good solubility in polar and organic solvents
- o Rich phase behaviors (Self-assembly)
 - ✓ Various self-assembled architecture
 - \checkmark Sensitive to environmental conditions : temperature, pH, etc
- o Environment-friendly and biocompatible material
- o Relatively poor mechanical and electrical properties

National Laboratory | REACTOR

SOURCE

→ Novel functional building block using CNT/polymer?

9 Y. Han, S. Ahn, Z. Zhang, G. S. Smith, and **C. Do*** *Macromolecules* **2015**, 48, 11, 3475–3480.

Tunable Encapsulation Structure

□ Tunable encapsulation structure revealed by SANS

seen by neutrons

Self-Assembled Micelles: Relaxation Kinetics

 \Box Critical micellization concentration, C^* (CMC)

□ Above a certain concentration, amphiphilic molecules (i.e. surfactants, block copolymers) self-assemble into micelles in aqueous solutions.

□ Relaxation kinetics of micelles at dynamic equilibrium

ightarrow Continuous redistributions of consistent molecules due to thermal fluctuations.

i) Association-dissociation process (exchange of individual molecules)

Time-Resolved SANS & Isotope Labeling

Hydrogen isotopes (H vs. D)

- Hydrogen
 - : An important and major component in all soft and biological materials
- Isotope labeling via H-D exchange
 : Very distinct neutron scattering lengths and cross sections

Deuterium (D) $b_{coh} = +6.671 \times 10^{-15}m$ $b_{inc} = +4.04 \times 10^{-15}m$

Hydrogen (H) $b_{coh} = -3.742 \times 10^{-15}m$ $b_{inc} = +25.274 \times 10^{-15}m$

□ Molecular exchange study via mixing H- and D-labelled micelles

Time-Resolved SANS Results

- ❑ Li+ ions significantly slow down the molecular exchange process
- More quantitative analysis is in progress

A. Patist *et al. J. Colloid Interface Sci.* 245, 1-15 (2002).
B. Hammouda, *J. Res. Natl. Inst. Stand. Technol*, 118, 151-167 (2013).

Actional Laboratory REACTOR SOURCE

Conclusion

Neutron scattering investigation can provide unique structural information when it is combined with contrast variation techniques or isotope labelling

Neutron's deep penetration power and low energy is ideal for studying soft materials

National Laboratory

Acknowledgement

C. Do (BSMD, BL-6) W.T. Heller (BSMD, BL-6) W.R. Chen (BSMD) G.S. Smith (BSMD) Y. Han (BSMD) Z. Zhang (BSMD)

J. Chen K. Hong S.K. Ahn

G. Feng (CBE) P.T. Cummings (CBE)

P. C. Joshi (MSTD) J.L. Banuelos (CSD)

National Laboratory

B.G. Compton C.E. Duty

B. Wu

M. Ohl (JCNS-SNS, BL-15)

Office of Science

APPENDIX

