

Making ESS a success -

A landscape of European accelerator based neutron sources

Thomas Gutberlet, JCNS

Short History of Neutron Sources I

Short History of Neutron Sources II

J.M. Carpenter, W.B. Yelon, Neutron sources, Methods Exp. Phys. 23 (1987) Part A.

Short History of Neutron Sources III

High brightness sources e.g. ESS

www.greatlighthouses.com/lighthouses/blackhead/

Mitglied der Helmholtz-Gemeinschaft

Forschungszentrum

A Network of Sources

- **ESS**, **ILL** for flux hungry experiments
- Medium flux sources for
 - method development
 - capability
 - user training
- Low flux sources
 - at universities
 - (maybe not for inelastic instruments)

BRILLIANCE SOURCE

Forschungszentrum

Neutron Science

European Neutron Landscape

European Neutron Landscape

40000

Figure 8. The predicted delivery of instrument beam days in the Baseline Scenario

Loosing 1/3 of capacity within the next decade !

Neutron Landscape – the global view

Nuclear fission

Reactor based neutron source (ILL, FRM II, NIST, JINR, ANSTO a.m.m.)

Spallation

Spallation based neutron source (ESS, ISIS, SINQ, SNS, CSNS, J-PARC, KEK) **Nuclear processes**

Accelerator based neutron source (LENS, RANS, HUNS, NUANS, IREN a.o.)

Nuclear Process	Example	Neutron Yield	Heat Release [MeV/n]	Source
D-T in solid target	400 keV d on T in Ti	4 x 10 ⁻⁵ n/d	10000	
Deuteron stripping	40 MeV d on liq. Li	7 x 10 ⁻² n/d	3500	
Nuclear photo effect	100 MeV e ⁻ on ²³⁸ U	5 x 10 ⁻² n/e ⁻	2000	HUNS, n-ELBE
from e-Brems-				
strahlung				
⁹ Be(d,n) ¹⁰ Be	15 MeV d on Be	1.5 x 10 ⁻² n/d	1000	
⁹ Be(p,n:p,pn)	11 MeV p on Be	4 x 10 ⁻⁵ n/d	2000	RANS, LENS
Nuclear fission	Fission of ²³⁵ U by thermal	1n/fission	180	MLZ, ILL
	neutrons			
Spallation	800 MeV p on ²³⁸ U or Pb	27 n/p or 17 n/p	55 or 30	ISIS, SINQ, ESS

Ref.: G. Mank, G. Bauer, F. Mulhauser, Accelerators for Neutron Generation and Their Applications, Rev. Accl. Sci. Tech 04, 219 (2011)

Nuclear fission

Mitglied der Helmholtz-Gemeinschaft

Spallation

Nuclear processes

Low energy nuclear processes

Nuclear process	E [MeV]	n/ion	n/(s mA)	n/(s kW)
p ⇒ Be	50	2.70%	1.68E+14	3.37E+12
d ⇒ Be	50	5.90%	3.69E+14	7.38E+12
p ⇒ Li	20	0.33%	2.08E+13	1.04E+12
$p \Rightarrow V$	50	5.08%	3.18E+14	6.35E+12
p ⇒ Ta	50	6.40%	4.00E+14	8.01E+12
$p\RightarrowW$	50	6.95%	4.35E+14	8.70E+12

J. Carpenter, C.-K. Loong, Elements of Slow-Neutron Scattering, Cambridge University Press, 2015

Mitglied der Helmholtz-Gemeinsunant

Ref.: LLB – Compact Neutron Sources for Neutron Scattering

Advantages / drawbacks of CANS

- Low energy protons (10-100 MeV vs 1 GeV)
- "Light" shielding (20-100 tons vs 6000 tons)
- Instrument line starts from the inside of the moderator
- Less high energy neutrons (less secondary background)
- Reduced costs
- Accelerator of 20-100 m versus 600 m at ESS
- CANS is not a nuclear facility
- CANS are scalable on demand
- Flux is intrinsically limited by peak current (I_{peak} ~ 100 mA)

Scalable Neutron Sources

0.01 KVV	0.1 kW	1 kW	10 kW	100 kW
).001-0.01 mA	0.01-1 mA	0.5-5 mA	1-20 mA	50-100 mA
~10 ¹¹ n/s	~10 ¹² n/s	~10 ¹³ n/s	~10 ¹⁴ n/s	~10 ¹⁵ n/s
10 Mio EUR				400 Mio EUR
HOKKAIDO		The Law Provention Reason	revenuencione Source Source Materia	SFOR IS SCIENCE
THE WORLD OF NEUTRON				
THE WORLD OF NEUTRON				

Forschungszentrum

- Accelerator driven pulsed neutron source
- Optimized for neutron scattering on small samples
- Low- or medium flux neutron laboratories
- Reasonable costs (~10 to ~300 MEUR)

Accelerators

Accelerator type	Advantage	Disadvantage
Cyclotron	 Proven technology Commercially available Lower floor space requirement 	 Usually offered for CW beams Beam intensity is limited to roughly a few mA
Electrostatic accelerator	 Variation of beam energy and particle species over a wide range High currents up to about 50 mA Low power and low cost 	 Limited in beam energy. A few tens of MeV are commercially available Not a compact design
RFQ / LINAC	 Low power and stable operation Variable pulse structure and CW operation Repetition rate of several 100 Hz Peak current up to about 100 mA 	 High price level, a lot of experience in accelerator science and not simple to operate and maintain if not turn-key systems
FFAG (Fixed-Field Alternating- Gradient accelerator)	 Low cost, compact design High pulse repetition (kHz range) and flexible pulse length Large momentum acceptance 	 Presently not commercially available High-power operation not demonstrated

Accelerators

for Neutron Science

Peak beam power and average beam power levels of proton linacs

Accelerators

Concept of the HBS-Accelerator

Forschungszentrum

Target material

- Above 35 MeV, high Zmaterial preferable
- Power up to 100 kW possible
- Complex target design

Target material

high neutron yield

- mechanical stable
- thermally stable
- workable
- corrosion resistance
- high blistering treshold
- activation & decay
- price

Tantalum (Ta)

From Proton to Neutron

Efficient Coupling of Target to Moderator

Target

Engineering challenges

Pushing Targets to the Limit

Cooling efficiency and mechanical stability

Engineering challenges manageable: Neutron yield: ~10¹⁵ n/s

90,32 Max 82,507 74,693 66,88 59,067 51,253 43,44 35,627 27,813 20 Min 10.000 (mm 2 500 7 500 Equivalent tensile stress [MPa] 80,217 Max 72,351 64,484 56,617 48,75 40,883 33,016 25,149 17,282 0,002 Min 2,500 7,500 HIGH BRILLIANCE SOURCE Forschungszentrum

Temperature [°C]

Target Biological shielding

Target

Efficient Coupling of Target to Moderator

Target Moderator / Reflector optimisation

Cold Moderators

Thermal and cold moderators

- Moderation of fast neutrons to thermal and cold energies
- "one"-dimensional
 "finger-"moderators
 with high brilliance!
- e.g. para-hydrogen

Beam Brilliance target thermal moderator Efficient beam extraction in combination reflector protons extraction channel with modern beam transport system shielding neutron source beam transport system

e for Neutron Science

Forschungszentrum

Instrumentation

Calculated instrument neutron flux

Mitg

2030: 10 INSTRUMENTS AROUND 2 TARGETS

Table 4.2.1Parameters of the ESS-Bilbao project.

Proton linac

50 MeV, 16 kW 2.25 mA (average), 20 Hz Long pulse, width 1.5 ms

Target station

Major activities

 $\begin{array}{l} \text{Be}(p,\,n)\\ \text{Solid methane with water}\\ \text{premoderator}\\ \sim 1\times\,10^{15}\,\,n/s\,(\text{calc.}) \end{array}$

SANS, moderator and neutronscattering component testing

- Both Short Pulse (SP) and Long Pulse (LP) options
- Cryogenic and gas handling systems for hydrogenous moderator

Several target stations

- Optimize pulse structure (length, rep. rate)
- Optimize thermal spectrum

Every beam port serves only 1 Instrument

- Optimize cold source spectrum
- Optimize geometry
- Integrate neutron optics with beam port

Small shielding

- Neutron guide around cold source
- Chopper at <1 m from target

www.fz-juelich.de/jcns/jcns-2/EN/Forschung/ High-Brilliance-Neutron-Source/_node.html

NOVA ERA (Design)

Laboratory facility: NOVA ERA

Workhorse instruments: scattering / analytics / imaging

University / industry laboratory Easy access, flexible use

Typical flux at sample position: $10^3 - 10^5$ cm⁻² s⁻¹ at 400 W power

CDR NOVA ERA FZJ Schriftenreihe, 2017 ISBN 978-3-95806-280-1

http://www.fz-juelich.de/ SharedDocs/Downloads/JCNS/JCNS-2/EN/Conceptual-Design.pdf

Martonvásár CANS Project

- CANS business plan:

- Neutron instrumentation tests for own needs: saves 100 k€/y
- Products and services for neutron source development
- Beams for industrial applications
- Beam for cancer therapy (BNCT)
- Development of neutron source for > 2023 in Hungary

Specifications: accelerator

- \geq 2.5 MeV, \leq 20 mA, 50 kW CW capable H^ beam
- Pulsed operation (5 % duty factor) for material diagnostics
- CW operation for irradiation (50 kW)
- 201.25 MHz (?) RF amplifier, solid state (?)
- Upgradable in energy

European Neutron Landscape – Making ESS as success !

HBS Team

J. Baggemann Th. Brückel T. Cronert P.-E. Doege T. Gutberlet J. Li E. Mauerhofer M. Rimmler U. Rücker J. Voigt P. Zakalek - core group: design, experimental verification, instrumentation

ZEA-1: Y. Bessler M. Butzek - Engineering

IKP-4:

O. Felden

- R. Gebel
- A. Lehrach
- D. Prasuhn
- Nuclear physics

GSI / HM

GSI Helmholtzzentrum für Schwerionenforschung GmbH M. Bai W. Barth *- Accelerator*

- S. Böhm
- J.P. Dabruck
- R. Nabbi
- Nuclear simul.

- C. Lange
- T. Langnickel
- Ch. Haberstroh
- M. Klaus
- S. Eisenhut
- AKR-2, liquid H_2

H. Podlech O. Meusel - Accelerator

A landscape of European accelerator based neutron sources

