Overview of CANS

David V. Baxter

Low Energy Neutron Source Center for Exploration of Energy and Matter (CEEM), Indiana University

OUTLINE

- What is a CANS and what could it do?
- Role of CANS in the international neuron ecosystem
- Example of innovations from small pulsed sources (HUNS, RANS, LENS)
- Opportunities for the future
- Conclusions

n-Source Energy budgets: \blacksquare D-D, D-T ($<\mu l$): $>4 \times 10^{11} \text{ n/J}$ $3x10^{10} n/J$ **Fission** (Dl): $2x10^{11} n/J$ - High-E proton spallation (l): ■ ESS, SNS, JSNS, SINQ, ISIS Low-E Proton (p,n)Be ~ 13 MeV (*ml*): 3×10^9 n/J ■ LENS, CPHS, RANS, ESS-B, HBS, SONATE,... - Threshold $(d,n)Be(p,n)Li(<ml): 0.5-1x10^9 n/J$ Astrophysics, BNCT, Fusion materials research $2x10^9 \text{ n/J}$ Electron on W (high-Z target) (cl): ■ HUNS, Bariloche, RPI, ...

n-Source Energy budgets: $>4x10^{11} n/J$ D-D, D-T ($< \mu l$): **Fission** (Dl): $3x10^{10} n/J$ $2x10^{11} n/J$ - High-E proton spallation (l): ■ ESS, SNS, JSNS, SINQ, ISIS Low-E Proton (p,n)Be ~13MeV (*ml*): $3x10^9 n/J$ ■ LENS, CPHS, RANS, ESS-B, HBS, SONATE,... $0.5 - 1 \times 10^9 \text{ n/J}$ - Threshold (d,n) Be (p,n) Li (< ml): $2x10^9 \text{ n/J}$ Electron on W [high-Z target] (cl): HUNS, Bariloche, RPI, ...

O(10¹⁴ n/s) requires target power ~50-100kW for CANS

Target Issues

Hydrogen blistering surface cooling are major issues

Hydrogen problem with Be

Solubility of H in Be is less than 0.08% at 1200°C!! Diffusivity in Be is VERY small.

p diffusion in Be, Al, V

Hydrogen problem with Be

Solubility of H in Be is less than 0.08% at 1200°C!! Diffusivity in Be is VERY small.

Protons that stop within the Be stay where they rest, and quickly accumulate to the point where the solubility in Be is exceeded.

Can this be avoided by separating the n-production and hydrogen sinking roles of the target?

1																	
Hydronen																	2
3	4	1															Helium
Li	Be											5	6	7	8	9	10
Lithium	Beryllium											Baran	C	N	0	F	Ne
11	12											13	14	Nitrogen 15	Oxygen 16	Fluorine 17	Neon
Na	IVIG											AI	Si	Ρ	S	ĊI	Ar
19	wagnesium 20	21	22	22	24	05	00					Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon
ĸ	Ca	Sc	Ťi	Ň	Ĉr	Mn	Fo	Co	28 Ni	29	30 7 n	31	32	33	34	35	36
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Kanalar
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Rubidium	Strontium	Yttrium	Zirconium	Niobium	lolybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	lodine	Xenon
55	56 D O	57-71	72	73	74	75	76	77	78	79	80	81	82 Db	83	84 Do	85	86
US	Da		Hafaium	Id	VV	Rhanium	US	Leidium.	PL	Au	пg	Thallium	PD	DI	PO	Actation	Padan
87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ba	00 100	Rf	Db	Sa	Bh	Hs	Mt	Ds	Ra	Cn	Nh	FI	Mc	Lv	Ts	Og
Francium	Radium		Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	Darmstadtium	Roentgenium	Copernicium	Nihonium	Flerovium	Moscovium	Livermorium	Tennessine	Oganesson
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Im	YD	LU
			Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
			89	90	91	92	93	94	95	96	97 Bk	98 Cf	Fe	Em	Md	Nd	Lr
			AC	Th	Ра	U	Ир	Pu	Am	GIII	DR	Californium	Finsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
			Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkenum	Cantornian	Lingtonian	a sector and			A CONTRACTOR OF CONTRACT

A quick review of the periodic table, phase diagrams and hydrogen diffusivity, leads you to focus on early transition metals as prime candidates.

Hydrogen problem with Be

Solubility of H in Be is less than 0.08% at 1200°C!! Diffusivity in Be is MANY orders of magnitude lower than in V, Nb, Ta, or even Al!

Solubility in V is more than 30% at elevated temp.

Target design limitations

Difficulty with the (p,n)Be target design is the buildup of H within the target at the depth of the Bragg peak.

- You need to avoid having the Bragg peak remain within the Be
 - Limit the Be thickness
 - Back the Be with another material
- At 13 MeV, proton range in Be is 1.3 mm.

BNCT target for 8MeV p on Be

Patent 特開2014-81211

Design of the blistering tolerant neutron target

22kW on target: KEK, Tsukuba

SARAF Li Target

Soreq Applied Research Accelerator Facility (Israel), currently at 2.3kW for Astrophysical applications. The liquid target flows at up to 10m/s, 1.5mm thick, 18mm wide., with the flow configuration determined by a stainless steel backing plate. Eventual goal is for 200kW operation.

Claim up to 4kW/cm² with water jet cooling and up to 8.4kW/cm² with l-Ga on solid targets.

I. Mardor et al., Eur. Phys. J. <u>54</u>, 91 (2018)

(p,n) target status

 20kW power on Be composite has been demonstrated at KEK (Kurihara at UCANS)

- A number of groups are proposing such power levels for Li targets as well.
- 80-100 kW on a reasonable foot print seems to be possible with either option
 - For Be, details yet to be worked out on bonding, conduction at these power.

The result of measurement during uniaxial rotation (<u>30 min)</u> for round robin sample is consistent with <u>J-PARC measurement within 1%</u> -> Compact source has high potential to use on-site

06 Jul.2019 UCANS8

Y.Ikeda et al, Tetsu to Hagane vol.104, No.3 (2018) pp.18-24

21

Bariloche: Bragg edge diffraction

Refinement of Bragg-edge transmission of Mo from the Bariloche group

A similar effort at Hokkaido Univ., including spectroscopic imaging, Sato et al. NIMA *623* 597 (2010)

It is clearly demonstrated texture around welded area became weak

Ideas have been transferred to the RADEN @ JPARC, VENUS @ SNS, ...

HTS Magnetic Wollaston Prisms

(Classical View) A neutron WP allows you to encode neutron trajectory information into the neutron phase (spin orientation). With this you can decouple momentum resolution from neutron intensity facilitating:

- Increased energy resolution in neutron scattering
- Spin-echo approaches to real-space correlations in materials
- New contrast mechanisms to neutron radiography

See Li et al. Rev. Sci. Inst. **86**, 023902 (2014), Li and Pynn, J. Appl. Cryst, **47**,1849 (2014) & perspective by F. Mezei, J. Appl. Cryst **47**,1807 (2014)

Neutron spin orientations

HTS Magnetic Wollaston Prisms

(Quantum View) A neutron WP acts as a birefringent medium for neutrons. It allows one to entangle the neutron spin with either momentum or position:

 Introduction of entangled spin states into neutron scattering

SESAME Instrument

On-line ³He polarization (SEOP) analysis

S. R. Parnell et al., Rev. Sci. Inst. (2015)

$$P_{s}(\xi)/P_{o}(\xi) = \exp(\Sigma_{t}[G(\xi)-1])$$

Real space correlations are determined directly from measuring the normalized polarization of the outgoing beam.

 $ξ = cBSλ^2Bcot(θ)$; c=2.476x10¹⁴ T⁻¹ m⁻² ξ = 30nm at λ=0.5nm, B=1mT, S=0.5m

SESAME Instrument

On-line ³He polarization (SEOP) analysis

S. R. Parnell et al., Rev. Sci. Inst. (2015)

$$P_{s}(\xi)/P_{o}(\xi) = \exp(\Sigma_{t}[G(\xi)-1])$$

Real space correlations are determined directly from measuring the normalized polarization of the outgoing beam.

 $ξ = cBSλ^2Bcot(θ)$; c=2.476x10¹⁴ T⁻¹ m⁻² ξ = 30nm at λ=0.5nm, B=1mT, S=0.5m What if we measure more than just the polarization as a function of ξ ?

Neutrons and QIS

Hasegawa et al., PRA 81, 032121 (2010)

$$M = E\left[\sigma_x^s \sigma_x^p \sigma_x^e\right] - E\left[\sigma_x^s \sigma_y^p \sigma_y^e\right] - E\left[\sigma_y^s \sigma_x^p \sigma_y^e\right] - E\left[\sigma_y^s \sigma_y^p \sigma_x^e\right]$$

- Neutron interferometry has been used for fundamental tests of QM for some time (e.g. above contextuality measurement with triply entangled beams) $\underline{M=2.558(4)}$ (NCHVT require <2).
- Problems: the entanglement geometry is macroscopic and fixed by interferometer geometry, no easy way to direct beam to a sample of interest.

Transmission entangled beam Expt. at ISIS

This affords an experiment like Hasegawa's, but with a MICROSCOPIC and CONTROLAB:LE entanglement length ξ ! NOW ADD SAMPLES!

The results are....

We calculate the witness:

$$S = E\left(0, \frac{\pi}{4}\right) + E\left(0, -\frac{\pi}{4}\right) - E\left(\frac{\pi}{2}, \frac{\pi}{4}\right) + E\left(\frac{\pi}{2}, -\frac{\pi}{4}\right)$$

 $E(\alpha, \chi) = \frac{N(\alpha, \chi) + N(\alpha + \pi, \chi + \pi) - N(\alpha, \chi + \pi) - N(\alpha + \pi, \chi)}{N(\alpha, \chi) + N(\alpha + \pi, \chi + \pi) + N(\alpha, \chi + \pi) + N(\alpha + \pi, \chi)}$

where α and χ are the spin and path phases between states and N is the measured neutron count.

For this combination of phases, QM maximally violates classical theory (up to S=2.828), non-contextual result is S<2,</p>

• We find S = 2.16(2) (3.03(2) with spin, path, E)

• (max we could measure is $2\sqrt{2}$ times the neutron polarization, (0.77); i.e. 2.18 is max expected).

Conclusion, we really do have an entangled state of spin
& path – a Bell state – for £ACH neutron

- CANS facilities have made important contributions, particularly in innovation and education.
- Partnerships with International-scale facilities have proven fruitful (HUNS/JPAC; LENS/ORNL,ISIS)
- To date, operational CANS targets have been demonstrated at significant power levels:
 - 20kW total beam power (KEK, Japan)
 - Up to 8kW/cm² (Soreq, Israel), Ga cooling
 - CANS are poised to reach (far) beyond the University scale over the next few years/decade.

Acknowledgements

Thanks to the LENS crew:

 Jak Doskow, Tom Rinckel, Roger Pynn, Mike Snow, Gerardo Ortiz, Steve Parnell, Steve Kuhn, Fankang Li*, Jiazhou Shen*, Shufan Lu*, Abu Ashik Irfan*, Sam McKay*, Alex Todd*

Funding/Beam time:

DOE, NIST (DOC), NSF, IU, HFIR, ISIS

Thanks for slides from:

- Yoshie Otake (RANS)
- Toshikazu Kurihara (KEK)
- Yoshiaki Kiyanagi (Nagoya)
- Ido Silverman (Soreq)