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OUTLINE

n What is a CANS and what could it do?
n Role of CANS in the international neuron 

ecosystem
n Example of innovations from small pulsed 

sources (HUNS, RANS, LENS)
n Opportunities for the future
n Conclusions



n-Source Energy budgets: 
n D-D, D-T ( <µl): >4x1011 n/J
n Fission (Dl): 3x1010 n/J 
n High-E proton spallation (l): 2x1011 n/J 

n ESS, SNS, JSNS, SINQ, ISIS

n Low-E Proton (p,n)Be ~13MeV (ml): 3x109 n/J
n LENS, CPHS, RANS, ESS-B, HBS, SONATE,…

n Threshold (d,n)Be (p,n)Li (<ml):      0.5-1x109 n/J
n Astrophysics, BNCT, Fusion materials research

n Electron on W (high-Z target) (cl): 2x109 n/J
n HUNS, Bariloche, RPI, …
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O(1014 n/s) requires target power ~50-100kW for CANS

n-Source Energy budgets: 



Target Issues

Hydrogen blistering surface cooling are major issues



Hydrogen problem with Be
Solubility of  H in Be is less than 
0.08% at 1200oC!! Diffusivity in Be 
is VERY small.
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Protons that stop within the Be stay 
where they rest, and quickly 
accumulate to the point where the 
solubility in Be is exceeded.

Can this be avoided by separating 
the n-production and hydrogen 
sinking roles of  the target?



A quick review of  the periodic table, phase diagrams and 
hydrogen diffusivity, leads you to focus on early transition 
metals as prime candidates.



Hydrogen problem with Be
Solubility of  H in Be is less than 
0.08% at 1200oC!! Diffusivity in Be 
is MANY orders of  magnitude 
lower than in V, Nb, Ta, or even Al!
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Target design limitations

Y. Yamagata et al.

Difficulty with the (p,n)Be target design is the buildup of  H within the target at the depth 
of  the Bragg peak. 
• You need to avoid having the Bragg peak remain within the Be

• Limit the Be thickness
• Back the Be with another material

• At 13 MeV, proton range in Be is 1.3 mm.



BNCT target for 8MeV p on Be
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22kW on target: KEK, TsukubaPresent status�



SARAF Li Target
Soreq Applied Research Accelerator Facility (Israel), currently at 2.3kW for Astrophysical 
applications.  The liquid target flows at up to 10m/s, 1.5mm thick,  18mm wide., with the flow 
configuration determined by a stainless steel backing plate. Eventual goal is for 200kW 
operation. 
Claim up to 4kW/cm2 with water jet cooling and up to 8.4kW/cm2 with l-Ga on solid targets.

I. Mardor et al., Eur. Phys. J.  54, 91 (2018)

I. Silverman at UCANS-8



(p,n) target status
n 20kW power on Be composite has been 

demonstrated at KEK (Kurihara at UCANS)
n A number of groups are proposing such power 

levels for Li targets as well.
n 80-100 kW on a reasonable foot print seems to 

be possible with either option
n For Be, details yet to be worked out on bonding, 

conduction at these power.
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Volume fraction estimation with RANS diffractometer 
Institute steel and iron Japan Research Group activity ₍2014-2016₎, 
Nippon Steel & Sumitomo Metal Co. JFE-Steel, Kobe steel, Daido steel 

retained austenite evaluation

The result of measurement during uniaxial rotation (30 min) for round  
robin sample is consistent with J-PARC measurement within 1%
-> Compact source has high potential to use on-site 

9mm×10mm×9.5mm

Controlled 

samples produced 

Y.Ikeda et al, Tetsu to Hagane vol.104, No.3 (2018) pp.18-24

2minutes for 1 diffraction 

Volume fraction 

estimatioln:30minutes- 5 

hours measurements 

according to requested 

accuracy

J-PARC Takumi: 13.9％
Austenite：13.1% TR2 full angle(300min,

current32μA)

→BCC peaks
→FCC peaks



Bariloche: Bragg edge diffraction

Refinement of  Bragg-edge 
transmission of  Mo from the 
Bariloche group

A similar effort at Hokkaido Univ., including 
spectroscopic imaging, Sato et al. NIMA 623 597 
(2010)



Imaging of anisotropy of crystal 
orientation

Degree of crystal orientation anisotropy 
（March-Dollase coefficient, R）
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It is clearly demonstrated texture around welded area became weak

Ideas have been transferred to the RADEN @ JPARC, VENUS @ SNS, …

Isotropic

Anisotropic
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Pixel size：800μm

Y. Kiyanagi et al.
(Hokkaido)
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120 mm

See Li et al. Rev. Sci. Inst. 86, 023902 (2014),  Li and Pynn, J. Appl. Cryst, 
47,1849 (2014) & perspective by F. Mezei, J. Appl. Cryst 47,1807 (2014)

n (Classical View) A neutron WP allows 
you to encode neutron trajectory 
information into the neutron phase 
(spin orientation). With this you can 
decouple momentum resolution from 
neutron intensity facilitating: 
n Increased energy resolution in neutron scattering
n Spin-echo approaches to real-space correlations in 

materials 
n New contrast mechanisms to neutron radiography

Neutron spin orientations

HTS Magnetic Wollaston Prisms



120 mmn (Quantum View) A neutron WP acts 
as a birefringent medium for 
neutrons. It allows one to entangle the 
neutron spin with either momentum 
or position: 
n Introduction of entangled  spin states 

into neutron scattering

HTS Magnetic Wollaston Prisms



SESAME Instrument

S. R. Parnell et al., Rev. Sci. 
Inst. (2015)

On-line 3He polarization 
(SEOP) analysis

x = cBSl2Bcot(q) ;  c=2.476x1014 T-1 m-2

x = 30nm at l=0.5nm, B=1mT, S=0.5m

Ps(x)/Po(x)=exp(St[G(x)-1])
Real space correlations are determined 
directly from measuring the normalized 
polarization of  the outgoing beam.
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Inst. (2015)

On-line 3He polarization 
(SEOP) analysis

x = cBSl2Bcot(q) ;  c=2.476x1014 T-1 m-2

x = 30nm at l=0.5nm, B=1mT, S=0.5m

Ps(x)/Po(x)=exp(St[G(x)-1])
Real space correlations are determined 
directly from measuring the normalized 
polarization of  the outgoing beam.

What if  we measure 
more than just the 
polarization as a 
function of  x?



Neutrons and QIS
Hasegawa et al., PRA 81, 032121 (2010)

• Neutron interferometry has been used for fundamental tests of  
QM for some time (e.g. above contextuality measurement with 
triply entangled beams) M=2.558(4) (NCHVT require <2).

• Problems: the entanglement geometry is macroscopic and fixed 
by interferometer geometry, no easy way to direct beam to a 
sample of  interest.



Transmission entangled beam 
Expt. at ISIS

This affords an experiment like Hasegawa’s, but with a MICROSCOPIC  
and CONTROLAB:LE entanglement length x! NOW ADD SAMPLES!



The results are….
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n We calculate the witness:

where ⍺ and χ are the spin and path phases between states 
and N is the measured neutron count.

n For this combination of phases , QM maximally violates 
classical theory (up to S=2.828), non-contextual result is S<2, 

n We find  S = 2.16(2) (3.03(2) with spin, path, E)
n (max we could measure is 2√2 times the neutron polarization,  

(0.77); i.e. 2.18 is max expected).
n Conclusion, we really do have an entangled state of spin 

& path – a Bell state – for EACH neutron
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Conclusions
n CANS facilities have made important contributions, 

particularly in innovation and education.
n Partnerships with International-scale facilities have 

proven fruitful (HUNS/JPAC; LENS/ORNL,ISIS)
n To date, operational CANS targets have been 

demonstrated at significant power levels:
n 20kW total beam power (KEK, Japan)
n Up to 8kW/cm2 (Soreq, Israel), Ga cooling
n => CANS are poised to reach (far) beyond the 

University scale over the next few years/decade. 
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