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VISION

diffraction
detectors

analyzers

neutron
beam

inelastic
detectors

• Indirect geometry 
spectrometer optimized to 
study chemical systems

• High flux/throughput
• Broadband (-2 to 1000 meV)
• Constant dE/E (~1.5%)
• Elastic line HMFW ~150 μeV
• Simultaneous diffraction
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Integrated modeling for data interpretation

Computer modeling is crucial to 
understand and interpret INS data. 

• Dual 16 core Intel Haswell E5-2698v3 3.2 GHz Processors per node
• 50 compute nodes, 1600 (non-hyperthreaded) cores
• 128 GB memory/node, 6.4 TB Total memory 
• Each node has 10Gbe and Infiniband networking for connectivity.
• Installed as part of the ORNL Compute and Data Environment for Science (CADES) 

VirtuES cluster
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Integrated Computational 
Environment, for Modeling 

and Analysis of Neutron data

Acknowledgement: Laboratory Directed Research and Development program at ORNL 
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DFT codes
(RMG-DFT, 
CP2K, abinit

Quantum 
Espresso)

Real Space 
Rietveld
(PdfGUI)

Molecular 
Mechanics, 
Dynamics
(LAMMPS,

GROMACS)

Reciprocal 
Space 

Rietveld
(GSAS

FullProf)

DATABASES
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VISION

ARCS
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CNCS
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Why do we need simulations for NVS (or 
INS in general)?

• Interpret neutron data
– assigning peaks to vibrational modes

• Obtain insight on fundamental properties 
– understanding interatomic interactions, anharmonicity, 

complex excitations, phase transitions, chemical reactions

• Connect theory and experiment
– simulation is a virtual experiment and an in silico

implementation of theory

We can measure it. We do understand it.
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What to simulate for INS?
• Double differential cross-section

• Fermi’s golden rule

• The goal is to formulate the interaction between 
neutrons and the system, so that S(Q,ω) can be 
expressed by the excitations of interest.
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V: potential describing the interaction 
between neutrons and the system
ℏ𝜔 : fundamental excitation in the system
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Coherent inelastic scattering
• One-phonon S(Q,ω)

𝑆=>?±A 𝑸, 𝜔

=
1
2𝑁

E
F

E
𝝉

1
𝜔F

E
H

I𝑏H
𝑚H

exp −𝑊H exp 𝑖𝑸 P 𝒓H 𝑸 P 𝒆HF

"

× 𝑛F +
1
2
±
1
2
𝛿(𝜔 ∓ 𝜔F)𝛿(𝑸 ∓ 𝒒 − 𝝉)

From: wikipedia• Peak position in energy depends on Q. 
• Total intensity determined by not only how each 

atom moves, but also their relative phase.

graphite@SEQUOIA
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Incoherent inelastic scattering
• One-phonon S(Q,ω)
𝑆WX=±A 𝑸, 𝜔 = ∑H
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C.M. Lavelle et al. / Nuclear Instruments and Methods 
in Physics Research A 711 (2013) 166–179

• Peak position in energy does not depend on Q
• Each atom contributes to the total intensity 

independently.

polyethylene@ARCS

Coherent

Incoherent
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Incoherent approximation
• When and why

– Elements/isotopes with large incoherent scattering cross-section (e.g., 
hydrogen, vanadium) – The scattering itself is intrinsically incoherent.

– High Q or large unit cell (small Brillouin zone), e.g. in low symmetry or 
disordered structure – The scattering may be coherent, but the ruler is 
too big for the pattern to be resolved.
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Development of OCLIMAX

• Started 2016

• First version released 
2017

• Paper published 2019

• Used to analyze data 
from VISION and 
multiple other neutron 
spectrometers

Features:
vIncoherent and coherent scattering
vPowders and single crystals
vTemperature effects
vMultiphonon excitations
vArbitrary instrument geometry and resolution
vArbitrary cuts in 4-dimensional Q-E space
vInterface with atomistic modeling tools (e.g. DFT 

codes)
vInterface with INS data analysis tools (e.g. DAVE 

and Mantid)
vUser-friendly (multiple platform, easy to use, fast 

on PCs)
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• Coherent scattering
– Powders
– Single crystal

• Kinematics
– Option to generate 

masks in the map

OCLIMAX example: graphite
Ei=30meV

Ei=55meV

Ei=125meV

Full calculation versus 
incoherent approximation

VISION

SEQUOIA OCLIMAX
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Calculated S(Q,w) map and various 
sampling trajectories

VISION S(Q,w) Map 

SEQUOIA
ARCS

etc

Cheng Y.Q., Daemen L.L., Kolesnikov A.I., Ramirez-Cuesta A.J., "Simulation of 
inelastic neutron scattering spectra using OCLIMAX", Journal of Chemical Theory 
and Computation, 15, 3, 1974-1982 (2019).
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OCLIMAX example: single crystal

H. Seto et al. Biochimica et Biophysica Acta, 1861, 3651-3660 (2017).

4SEASONS
@J-PARC

OCLIMAX

ü Validating 
phonon 
frequencies, 
polarization 
vectors, and 
force constants

ü Understanding 
phonon 
anomalies.
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Total cross sections for solids from first 
principles calculations
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OCLIMAX bridges theory and INS experiments

VISION, CNCS, HYSPEC, SEQUOIA, ARCS and many other neutron spectrometers. 
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Traditional methods
• Minimization, least squares algorithms

• Sequentially fitting QENS functions to data

• Parameters collected

• Plot parameters vs Q

• Fit parameters to functionality

• Laborious, time consuming

• Tedious, error prone method

• It is very difficult to track what’s been done to the data

slow and fast dynamics cannot be accounted for without the inter-
mediate dynamic process, in the ca. 10 μeV range, which is associated
with the in-cage center-of-mass localized dynamics of the cations. The
two-component fits of data from liquids are usually comfortably within
the reach of the BASIS dynamic range, whereas explicit three-compo-
nent fits are possible only infrequently [15]. As typical for BASIS data
from liquids, here we use two dynamic components, denoted narrow
and broad, and a background, to fit the experimental spectra:

I Q E f Q
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f Q
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R Q E C Q E C Q

( , ) [ ( ) 1 (Q)
(Q)

(1 ( )) 1 (Q)
(Q)

]

( , ) ( ( ) ( ))
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n

n
eisf

b

b2 2 2 2

1 2

= + + ++ + (4)
As in the original work [10], the term is the square brackets, de-

scribed by Equation (2), is numerically convolved with the experi-
mentally measured resolution function, R(Q,E), and a fitted linear
background (the last term in brackets) is also used. For both “sequen-
tial” and “global” fits, we utilized the new fitting package qClimax
(please contact the authors if you want to beta test the software). It is a
Python program that uses LMFiT [20] and is distributed in a virtual
machine, which makes it platform-independent and allows hetero-
geneous use of the software. As for the interface, the initialization file
can be run from a web application and from the command line. Ex-
ecution takes a few minutes and can process all datasets (e.g., data
measured as different temperatures) in a sequence. qClimax allows
exploration of a large number of models systematically in a short period
of time.

The Q-dependent parameter feisf was analyzed in detail in the ori-
ginal work [10] to obtain the characteristic size of the transient con-
finement by nearest neighbors experienced by the cation. Here we
would like to reevaluate the Q-dependence of the QENS signal com-
ponents width. The QENS signal width obtained from the fits is pre-
sented in Fig. 3 as symbols. In the “sequential” fits [10], the Γn(Q) and
Γb(Q) components are fitted independently (open symbols in the left
and right panels, respectively), then the (Γb(Q) - Γn(Q)) is calculated
(open symbols in the middle panels). The resulting Γn(Q) is then fitted
with a jump diffusion law, Γn(Q)= DQ2/(1+τDQ2) (dashed lines in
the left panels). The resulting (Γb(Q) - Γn(Q)) is fitted with Equation (3)
(dashed lines in the middle panels). In the “global” fit, the functionality
described by Equation (3) is imposed on the Γb(Q), as shown by the
solid lines in the middle panels, representing (Γb(Q) - Γn(Q)). The re-
sulting Γn(Q) is then fitted with a jump diffusion law, Γn(Q)= DQ2/
(1+τDQ2) (solid lines in the left panels), just as it was fitted in the
“sequential” approach. With either “sequential” or global fit, the un-
restricted diffusion model used for the narrow component would clearly
be inadequate for description of the Q-dependence of the broad com-
ponent, as demonstrated by the dotted line in the middle panels, since
the width of the broad component of the QENS signal does not seem to
approach zero in the limit of low Q. The inadequacy of the unrestricted
diffusion model for the broad component is further illustrated by Fig. 4
that presents zoomed-in low-Q data from the middle panels of Fig. 3.
This is a rather intuitive conclusion for the component associated with
the localized dynamics.

As long as the restricted diffusion model of Equation (3) is used for
the broad component, the difference between the parameter sets obtain
using two approaches, “sequential” and global, is small for the localized
dynamics and practically negligible for the translational dynamics, as
evidenced by the close and completely overlapping solid and dashed
lines in the middle and left panels of Fig. 3, respectively. The tem-
perature dependences of the fitted parameters are compared in Fig. 5. It
should be noted that the model described by Equation (3), whether
applied in “sequential” or global fits, makes an explicit assumption
about the approximately spherical shape of the transient nearest-
neighbors confinement volume defined by the parameter a. Although
this assumption is usually reasonable, one needs to bear in mind that

modification of Equation (3) would be required in the case of clearly
anisotropic (e.g., of cylindrical shape [18,19]) transient confinement.

4. Conclusion

We proposed and evaluated, using a new fitting package qClimax
(please contact the authors if you want to beta test the software) and a
benchmark data set, a simple analytical model for two-component fit-
ting of QENS data measured from liquids. The model describes center-
of-mass particles motions: the long-range translational diffusion and
localized in-cage dynamics. The use of this model is helpful, though
optional, in the traditional “sequential” data QENS fitting, but essential
in the global QENS data fitting, where the data are fitted simulta-
neously at all Q values.
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QClimax

Non-Linear Least-Squares Minimization
and Curve-Fitting for Python

Release 0.9.6

Matthew Newville, Till Stensitzki, and others

Mar 27, 2017
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Qclimax

Global fitting of the data

Fitting data using parameter 
while imposing constraints 
overt this parameter: 

𝐹𝑊𝐻𝑀 = 𝑓 𝛼, 𝛽, 𝛾,⋯ , 𝜔, 𝑸

Returning best fit values for 
𝛼, 𝛽, 𝛾 ⋯ and so forth
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Qclimax

Global fitting of the data

Fitting data using parameter 
while imposing constraints 
overt this parameter: 

𝐹𝑊𝐻𝑀 = 𝑓 𝛼, 𝛽, 𝛾,⋯ , 𝜔, 𝑸

Returning best fit values for 
𝛼, 𝛽, 𝛾 ⋯ and so forth
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Qclimax

Example:
Chudley-Elliot fit to hydrogen in 
metal hydrides
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Bayesian behaviour



26 Presentation_name

Many flavours

• Docker container
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Many flavours

• Virtual machine
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Many flavours

• Web access (hosted at ORNL, CADES)
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Simple interface
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Simple interface
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Simple interface
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Simple interface
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Use your constraints
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Constraints not there?
No problem write them in python!
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Select methods
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Repeat old runs
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Modify old runs, make expert changes
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Run fittings
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Visualize, edit results, get new starting 
configurations, download etc.
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Visualize, edit results, get new starting 
configurations, download etc.



41 Presentation_name

User computer Linux, mac, PC

Structure of heterogeneous software
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User computer Linux, mac, PC

Structure of heterogeneous software

VirtualBox
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User computer Linux, mac, PC

Structure of heterogeneous software

VirtualBox
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Structure of heterogeneous software

User computer Linux, mac, PC
VirtualBox

Docker Container
Translations PYTHON

Docker Container
Translations PERL

Docker Container
Oclimax FORTRAN

Docker Container
Qclimax PYTHON
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Structure of heterogeneous software

User computer Linux, mac, PC
VirtualBox

Docker Container
Translations PYTHON

Docker Container
Translations PERL

Docker Container
Oclimax FORTRAN

Docker Container
Qclimax PYTHON
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Conclusion

• Instrumental needs in VISION at SNS require respectable computer 
resources (1600+ cores cluster today ) to help interpret the data

• The VirtuES cluster is available for users to run mostly DFT 
• Software to generate inelastic neutron spectra from calculations to directly 

compare with experimental data has been developed (Oclimax)
• Software to analyze QENS data using global fitting and easy interface and 

extensibility in the fitting functions and constraints is also available. 
• Virtual machine technologies, VirtualBox and Docker are used to produce 

software that is easy to maintain, expand and that can be operated from the 
command line and a web interface if desired.

• Secondary objective for software is to automate processes by exchanging 
file formats and generate a number of input/output files for different codes

• And much more…
• These codes provide the basis for a different approach to automation and 

reproducibility of neutron data analysis as well as routine integration of 
computer modeling in neutron scattering.

• Questions?
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