Wide-angle polarization analysis using 3He spin filters on the LET spectrometer

Gøran Nilsen
ISIS Neutron and Muon Facility
Rutherford Appleton Laboratory
ICANS 15/10/2019
Outline

- The LET time-of-flight spectrometer
- Quick introduction to polarized neutrons
- The case for polarized neutrons on LET
- Technical implementation
- Polarized QENS: D$_2$O
- Powder magnetic scattering: Ho$_2$Ti$_2$O$_7$
The LET time-of-flight spectrometer

Direct geometry TOF spectrometer on coupled H$_2$ Moderator

- E_i 1 - 25 meV
- Resolution 1 - 4 %
- ϕ (3 Å) 3×10^5 ncm$^{-2}$s$^{-1}$
- Beam size 2 x 4 cm2
- Detectors 3He PSD
- Coverage π st.

Multi-chopper system: multiple E_i in each time frame

Russina et. al. NIMA 604 624
Hexadecane (C\textsubscript{16}H\textsubscript{34})

Figure: R. Bewley
LET: QENS

Hexadecane (C_{16}H_{34})

IN6
5.1 Å, 70 µeV

Figure: R. Bewley
Hexadecane ($\text{C}_{16}\text{H}_{34}$)

$E_i = 9.6 \text{ meV}$, $\text{res} = 210 \text{ uev}$

$E_i = 3.2 \text{ meV}$, $\text{res} = 40 \text{ uev}$

1.6 meV, $\text{res} = 15 \text{ uev}$

0.9 meV, $\text{res} = 7 \text{ uev}$

0.6 meV, $\text{res} = 4.4 \text{ uev}$

Figure: R. Bewley

IN6
5.1 Å, 70 µeV

10^{-9} s
LET: QENS

Hexadecane ($\text{C}_{16}\text{H}_{34}$)

Figure: R. Bewley
Hexadecane ($\text{C}_{16}\text{H}_{34}$)

Let: QENS

Figure: R. Bewley
LET: current science

Magnetism 85%

QENS 15%

e.g. exotic phases in quantum magnets
Schmidiger et. al. PRL 115 147201

e.g. diffusion in ionic conductors
Voneshen et. al. PRL 118 145901
Polarized neutron beams

Neutrons possess an inherent spin-angular momentum $S = \frac{1}{2}$:

Single neutron

- $+\frac{1}{2}$: $z \parallel B$
- $-\frac{1}{2}$: $z \parallel B$

Beam of neutrons

$P = \frac{N_+ - N_-}{N_+ + N_-}$

where N_+ and N_- are the number of neutrons with spin-up and spin-down, respectively.
Neutron polarization analysis

Samples also contain magnetic moments, either from nuclei or electrons (i.e. magnetism):

Some processes flip the neutron spin, others don’t - also depends on the relative orientations of the neutron moment and the moments in the sample.
Uniaxial polarization analysis

- **Polarizer**
- **Flipper**
- **Analyzer**

<table>
<thead>
<tr>
<th>Coherent</th>
<th>Non spin flip</th>
<th>Spin flip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spin incoherent</td>
<td>1/3</td>
<td>2/3</td>
</tr>
</tbody>
</table>

\[
\frac{1}{2} \left[1 - (\hat{P} \cdot \hat{Q})^2 \right] \quad \hat{P} \cdot \left[\hat{Q} \times (M(\hat{Q}) \times \hat{Q}) \right]
\]

\[
\frac{1}{2} \left[1 + (\hat{P} \cdot \hat{Q})^2 \right]
\]
Uniaxial polarization analysis

Polarizer	Flipper	Analyzer
\[\uparrow \rightarrow p \rightarrow \downarrow \rightarrow f \rightarrow \uparrow \rightarrow a \rightarrow \downarrow \]

<table>
<thead>
<tr>
<th>Coherent</th>
<th>Spin incoherent</th>
<th>Paramagnetic powder</th>
<th>Magnetic crystal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non spin flip</td>
<td>1</td>
<td>1/3</td>
<td>(\frac{1}{2} \left[1 - (\hat{P} \cdot \hat{Q})^2 \right])</td>
</tr>
<tr>
<td>Spin flip</td>
<td>0</td>
<td>2/3</td>
<td>(\frac{1}{2} \left[1 + (\hat{P} \cdot \hat{Q})^2 \right])</td>
</tr>
</tbody>
</table>
LET with polarization analysis

Components of $S(Q,\omega)$: e.g. battery

Components of $S^{\alpha\beta}(Q,\omega)$: e.g. ladder

Longitudinal

Transverse

$H^+, D^+, Li^+, Na^+...$
Polarized LET: Concept

Supermirror polarizer, current-ramped Mezei (precession coil) flipper, \(^3\)He analyzer

Nilsen et. al. J. Phys.: Conf. Series 115 012019
Polarizer, flipper, and guide field give $P \sim 0.94$ at $\lambda > 3$ Å ($E_i < 9$ meV) with $T \sim 0.4$:

Kosata et. al. Physica B 551 476
Analyzer: 3He versus supermirrors

<table>
<thead>
<tr>
<th>Hyperpolarized 3He</th>
<th>Supermirrors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheap(er) hardware</td>
<td>Expensive</td>
</tr>
<tr>
<td>Time-dependent, requires monitoring</td>
<td>Static</td>
</tr>
<tr>
<td>Large solid angle</td>
<td>Smaller solid angle</td>
</tr>
<tr>
<td>Sensitive to field gradients</td>
<td>No strict requirements</td>
</tr>
<tr>
<td>Easy corrections</td>
<td>Difficult corrections, systematic errors</td>
</tr>
</tbody>
</table>

Hyperpolarized 3He Analyzer
- HZB/FZJ (E. Babcock)

Supermirrors
- HYSPEC, ORNL

![Image of 3He analyzer, HZB/FZJ (E. Babcock)](image1)

![Image of Supermirror, HYSPEC, ORNL](image2)
Analyzer: concept

Sectional View of Sample Vessel and Analyser Assembly

- Field Coils (Upper)
- \(^3\)He monitor
- Radial oscillating collimator
- Field Coils (Lower)
- Collimator Mounting Plate

Figure: P. Galsworthy

Cassella et. al. J. Phys.: Conf. Series, in press
Analyzer: implementation

Two cells constructed ($T_{1}^{\text{cell}1} = 55$ hours $T_{1}^{\text{cell}2} = 18$ hours), initial 3He polarization $P_{0} \sim 60\%$, rapid (20 s) changeover:

Polarized LET: Overall performance

<table>
<thead>
<tr>
<th></th>
<th>3.84 meV</th>
<th>1.05 meV</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_p</td>
<td>0.4</td>
<td>0.35</td>
</tr>
<tr>
<td>f_p</td>
<td>0.94</td>
<td>0.94</td>
</tr>
<tr>
<td>T_a</td>
<td>0.32</td>
<td>0.16</td>
</tr>
<tr>
<td>a</td>
<td>0.72</td>
<td>0.94</td>
</tr>
<tr>
<td>FR</td>
<td>5.2</td>
<td>15.7</td>
</tr>
</tbody>
</table>

Graph

- **Transmission (T)**
- **Neutron polarization (P)**
- **Quality factor (P^2T)**

$P_{He} = 0.6$

$P_{He} = 0.75$ bar

Slide: R. Stewart
QENS: D$_2$O

Arantxa Arbe, Juan Colmenero, Fernando Alvarez
University of the Basque Country
Victoria Garcia-Sakai, Ross Stewart
ISIS
First experiment: context

Intermediate-length scale diffusion in water and glass formers almost unexplored

Unpolarized QENS
(IN5, ILL)

- D$_2$O “coherent”
- H$_2$O “incoherent”

Polarized diffraction
(D7, ILL)

- Ratio coherent to incoherent, energy integr.

Arbe et. al. Phys. Rev. Lett. 117 185501
First experiment: context

Intermediate-length scale diffusion in water and glass formers almost unexplored

Unpolarized QENS (IN5, ILL)
- **D$_2$O “coherent”**
- **H$_2$O “incoherent”**

Polarized diffraction (D7, ILL)
- Ratio coherent to incoherent, energy integr.

Arbe et. al. Phys. Rev. Lett. 117 185501
D_2O: incoherent-coherent separation

\[S(Q, \nu)_{\text{inc}} = \frac{3}{2} S(Q, \nu)_{\text{sf}} \]

self motions

\[S(Q, \nu)_{\text{coh}} = S(Q, \nu)_{\text{nsf}} - \frac{1}{2} S(Q, \nu)_{\text{sf}} \]

collective and self motions

D$_2$O: separation of timescales at low Q

D$_2$O: separation of timescales at low Q

D$_2$O: reconciling results with model

Three contributions to coherent dynamics, consistent with state-of-the art model:

- 3-component model from MD simulation
- effective local (1.81 meV and 3.84 meV)
- vibrational (1.81 meV and 3.84 meV)
- diffusive (1.81 meV and 3.84 meV)
- diffusive (1.05 meV, 1.81, and 3.84 meV)
- overall coherent 295 K (1.05 meV, 1.81, and 3.84 meV)
- overall coherent 280 K (1.05 meV, 1.81, and 3.84 meV)
- overall coherent 350 K (1.05 meV, 1.81, and 3.84 meV)
- effective coherent relaxation time from MD simulation
- T-dependence of neutron coherent relaxation time
- T-dependence of IXS coherent relaxation time

Paramagnetic scattering: Ho$_2$Ti$_2$O$_7$
Polarization analysis on a 2D detector

<table>
<thead>
<tr>
<th>Coherent</th>
<th>Spin incoherent</th>
<th>Paramagnetic powder</th>
<th>Magnetic crystal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non spin flip</td>
<td>1</td>
<td>1/3</td>
<td>[\frac{1}{2} \left[1 - (\hat{P} \cdot \hat{Q})^2 \right]]</td>
</tr>
<tr>
<td>Spin flip</td>
<td>0</td>
<td>2/3</td>
<td>[\frac{1}{2} \left[1 + (\hat{P} \cdot \hat{Q})^2 \right]] [\hat{P} \cdot \left[\hat{Q} \times (\hat{M} \hat{Q}) \times \hat{Q} \right]]</td>
</tr>
</tbody>
</table>

LET detector, ~100000 pixels
Paramagnetic powder: $\text{Ho}_2\text{Ti}_2\text{O}_7$

$\text{Ho}_2\text{Ti}_2\text{O}_7$, 2 K, $E_i = 4.0 \text{ meV}$, energy integrated:
Z+: using PSD for separation

$\text{Ho}_2\text{Ti}_2\text{O}_7$, 2 K, $E_i = 4.0$ meV, energy integrated:
Conclusion

- A uniaxial polarisation mode has been constructed for the LET spectrometer.
- Overall performance is excellent, although some improvements remain to be made for the 3He analyser.
- The potential of the polarised mode for QENS is demonstrated by the first user experiment on D$_2$O.
- Magnetic scattering on a spectromter with large out-of-plane coverage is new territory - new approaches required.
Acknowledgements

LET Project
ISIS
Mark Devonport
Ross Stewart
Rob Bewley
David Voneshen
Peter Galsworthy
Davide Raspino

Gino Cassella (Uni. Bath)
Jan Kosata (ETHZ)
Holly McPhilips (St. And’s)
Emily McFarlane (Exeter)

Jamie Nutter
Dan Pooley
Jason Chandler
Maksim Schastny
Jon Bones, Josef Lewis…

D$_2$O
U of the Basque Country
Arantxa Arbe
Juan Colmenero
Fernando Alvarez

ISIS
Vicky Garcia-Sakai

Ho$_2$Ti$_2$O$_7$
ISIS/UCL
Robin Perry