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The Chopper Extension
Particle history
• Neutron beamlines often include moving components.
• MCNPX has stationary surfaces and static media.
• Goal of performing detailed background simulations of a beamline (guides,
choppers, fast neutrons, gammas) in MCNPX.

Chopper Extension
• Non-static surfaces

• The positions of surfaces have to
be updated during execution time
in small time steps.

• Care must be taken at surface
crossings.

• High-speed media
• The cross sections and collision
kinematics will depend on energy
of the medium, requiring frame
transformations during transport.
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Standard Transport in MCNPX
Particle history in MCNPX

• Emitted source particles propagate
stochastically through a geometry.

Source particle
• The particle is initialized with a
weight, energy, time, cell location,
emission direction, etc.
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Standard Transport in MCNPX
Particle history in MCNPX

• Emitted source particles propagate
stochastically through a geometry.

• Interaction type determined.

Interaction type
• dcollision: distance to the next
collision (from Σtotal and
exponential distribution).

• dboundary: distance to the next cell
boundary.

• Others: ddxtran, dtime, dww, den.
• A quantity, dmin, representing the
minimum of these distances
becomes the next collision type.
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Standard Transport in MCNPX
Particle history in MCNPX

• Emitted source particles propagate
stochastically through a geometry.

• Interaction type determined.
• Particle advances to next location
and interaction takes place.

Interaction takes place
• Particle advances by dmin along ~k.
• dcollision: the collision kinematics are
determined from ~k, cell
temperature, collision tables, etc.
and the out-going particle energy
and direction is found.

• dboundary: the particle is processed
through the surface into an adjacent
cell.
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Standard Transport in MCNPX
Particle history in MCNPX

• Emitted source particles propagate
stochastically through a geometry.

• Interaction type determined.
• Particle advances to next location
and interaction takes place.

• The process repeats.

Static geometry and materials
• The entire geometry is static
throughout this process.

• Moving objects aren’t handled
during a history.

• Collective motion of materials is not
accounted for.
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Standard Transport in MCNPX
Particle history in MCNPX

• Emitted source particles propagate
stochastically through a geometry.

• Interaction type determined.
• Particle advances to next location
and interaction takes place.

• The process repeats.

Static geometry and materials
• The entire geometry is static
throughout this process.

• Moving objects aren’t handled
during a history.

• Collective motion of materials is not
accounted for.

The Chopper Extension
• Handles the special case of rotation about a stationary point.
• Collective velocities of moving objects affect collision kinematics.
• The geometry is updated only when needed.
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The Chopper Extension
Dynamic surface definitions
1. Surfaces(S) are defined at the origin
(SO) and placed at a location
(Sworld) with a transformation at
initialization.

• Sworld = DRSO

2. Surfaces are returned to the origin.
• SO = −DworldR

−1
worldSworld

3. The angular shift is determined.
• ∆θ = 2πtcurrf + φ0 − θprev

4. The surfaces are rotated and
returned to the “world”.

• Sworld = DworldRworld [R(∆θ)SO]
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The Chopper Extension
Dynamic surface definitions
1. Surfaces(S) are defined at the origin
(SO) and placed at a location
(Sworld) with a transformation at
initialization.

• Sworld = DRSO

2. Surfaces are returned to the origin.
• SO = −DworldR

−1
worldSworld

3. The angular shift is determined.
• ∆θ = 2πtcurrf + φ0 − θprev

4. The surfaces are rotated and
returned to the “world”.

• Sworld = DworldRworld [R(∆θ)SO]

High-speed media
• The velocity at the edge of a 0.5 m
radius disk spinning at 60 Hz
(≈ 200 m s−1) is comparable to a
cold neutron (≈ 1000 m s−1).

• Target-at-rest frame transformation.
• ~pTAR = ~pn − ~pt
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The Chopper Extension
Dynamic surface definitions
1. Surfaces(S) are defined at the origin
(SO) and placed at a location
(Sworld) with a transformation at
initialization.

• Sworld = DRSO

2. Surfaces are returned to the origin.
• SO = −DworldR

−1
worldSworld

3. The angular shift is determined.
• ∆θ = 2πtcurrf + φ0 − θprev

4. The surfaces are rotated and
returned to the “world”.

• Sworld = DworldRworld [R(∆θ)SO]

High-speed media
• The velocity at the edge of a 0.5 m
radius disk spinning at 60 Hz
(≈ 200 m s−1) is comparable to a
cold neutron (≈ 1000 m s−1).

• Target-at-rest frame transformation.
• ~pTAR = ~pn − ~pt

Surface crossing
• The geometry is treated as static
close to a surface to avoid surface
crossing errors.
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Transport in MCNPX with the Chopper Extension
Particle history in MCNPX

• Emitted source particles propagate
stochastically through a geometry.

Chopper Extension
• The surface definitions are updated
if the particle is created in a cell
that is flagged as moving, and the
current cell is updated accordingly.

• The particle propagates normally
through the geometry, interacting
with non-moving cells as in
standard MCNPX.
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Transport in MCNPX with the Chopper Extension
Particle history in MCNPX

• Emitted source particles propagate
stochastically through a geometry.

• The particle enters a moving cell.

Moving cells
• Any cell with surfaces that are
flagged as dynamic.

• The surface definitions are updated
depending on the current time.

• Only the dynamic surfaces of the
current cell are updated.
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Transport in MCNPX with the Chopper Extension
Particle history in MCNPX

• Emitted source particles propagate
stochastically through a geometry.

• The particle enters a moving cell.
• Interaction type determined.

Interaction type
• A new distance is introduced,
dmotion, which is found from the user
specified time limit and the neutron
velocity.

• The collective velocity is used to
transform the particle into the
target-at-rest system before
determining the cross section, and
thus before determining the
mean-free-path and dcollision.
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Transport in MCNPX with the Chopper Extension
Particle history in MCNPX

• Emitted source particles propagate
stochastically through a geometry.

• The particle enters a moving cell.
• Interaction type determined.
• Particle advances to next location
and interaction takes place.

Interaction takes place
• dmotion: the particle advances by a
small step and returns to update the
surface definitions again.

• dcollision: the particle is transformed
into the target-at-rest system,
collision kinematics are calculated
as in standard MCNPX, and then the
particle is transformed back into the
laboratory system.
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Neutron tracks in a chopper
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Phenomena
Kinematics
• Collective velocity of spinning object affects scattered neutron beam direction.
• Energy of nuclei in medium affects the cross section for collisions.

• Dragging of neutron trajectories along motion direction.
• Asymmetric field of neutrons outside a spinning object.
• Spectrum of scattered is significantly changed.

Time dependent geometries
• Can study time dependent phenomena (choppers).
• Cold neutron beam can be propagated down a beamline while preserving
background information (fast neutrons, gammas).
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Dragging along the direction of motion
Particle history

• Transformation into target-at-rest
frame takes place before
determining cross sections and
collision kinematics.

• Consider neutrons incident into
edge of thick polyethylene disc
spinning at 600 Hz. 0
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Time dependent geometries
• Neutrons will, in general, carry extra momentum in the direction of momentum
after collision in a moving medium.
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Asymmetric field of scattered neutrons
Neutrons

(a)
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Integrals of 85◦ angular regions
Region 0 Hz 60 Hz CW 600 Hz CW
Upstream left 32.9 41.1 64.6
Upstream right 32.9 24.4 1.4
Downstream left 17.1 12.9 0.6
Downstream right 17.1 21.6 33.4

• Mono-energetic source of 5 Å neutrons incident
on the polyethylene disc with no rotation, and
spinning at 60 Hz and 600 Hz.
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Shift in the energy spectrum

Neutrons
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Spectral shift for moving media
• A beam of 100 eV neutrons incident on a 20 K
polyethylene disc, tallying neutron energy
spectrum downstream (left) and upstream (right).

• Energy shift of the peak due to the kinetic energy
of the hydrogen atoms, EH(f) = 2mH(πfr)

2.
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Bandwidth chopper simulation
(a) (b)

Neutrons

(c)

Two chopper configuration
• Band pass of 2 Å centered at 3.8 Å
when operated at 60 Hz.

• 5 Hz source illustrates frame overlap.
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Time schedule
• TOF reconstruction of the energy
spectrum should be possible.
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Bandwidth choppers
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Simulation results
• Good agreement between energy tallied spectrum(left) TOF converted
spectrum (center)

• Consistent frame overlap locations between the TOF spectrum (center) and
the time schedule (right).
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Conclusions
The Chopper Extension
• Time dependent surfaces and high-speed media can be studied in MCNPX with
the Chopper Extension.

• Significantly different neutron spectra through spinning objects compared to
static objects.

Future work
• Moving media inside static surfaces (eg. flowing fluid) and other kinds of motion
(eg. linear translation)would be straightforward to build into the existing
framework.

• Along with other code extensions (SANS, guides, single crystals), the Chopper
Extension is part of a powerful suite of tools for performing detailed simulations
of a neutron beamline for background studies.

12



Thank you!
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