

Contribution ID: 9 Type: Oral Presentation

100 Mo/ 99m Tc and 64 Cu medical radioisotopes production using 14 MeV fusion neutrons

Thursday, 17 October 2019 15:45 (25 minutes)

After the 2009 99m Tc global crisis, the scientific community is in search of alternative routes for producing 99 Mo, the precursor of 99m Tc, presently produced at fission research reactors using U-235-containing targets. International organizations such as IAEA, NEA and OECD have indicated a series of possible alternatives, based on particles accelerators as well as fast neutron reactions.

In this contribution we will present an approach based on the 100 Mo(n,2n) 100 Mo reactions induced by 14 MeV fusion neutrons generated at a compact accelerator-driven D-T source.

Also, a brief discussion on the production of the ranostic radionuclides like $^{64}\mathrm{Cu}$ will be presented.

Primary author: PIETROPAOLO, Antonino (ENEA Department of Fusion and Technologies for Nuclear Safety and Security)

Co-authors: Dr CAPOGNI, Marco (ENEA); Dr CAPONE, Mauro (ENEA); Dr PALOMBA, Silvia (ENEA and Uni ToV); Dr DELLE PIANE, Gaia (LHEP University of Bern); Dr FALCONI, Rita (Università degli Studi di Roma La Sapienza)

Presenter: PIETROPAOLO, Antonino (ENEA Department of Fusion and Technologies for Nuclear Safety and Security)

Session Classification: Accelerator

Track Classification: Instrument