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(13 Outline

* Introduction to the PSI High Intensity Proton Accelerator (HIPA) Facility
* Beam Transport to the SINQ Target

* Motivation: Open Issues to be Addressed

* New Beam Diagnostic Tools for Safer Operation

* Understanding Beam Losses through Improved Simulations

* Conclusions and Outlook
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«(-{}» The PSI HIPA Proton Accelerator Facility
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HIPA (High Intensity Proton Accelerator)
CW, 590 MeV, up to 1.44 MW Beam

2 meson production targets (7 sec. beam lines)
SINQ spallation source

Max 8s Macro-Pulses, up to 3% duty-cycle to UCN

Muon & Pion

PROSCAN (Protontherapy)
CW, 250 MeV, up to 1000 nA proton beam

In operation since 2007

2 Gantries, 1 Eye Cancer Treatment Station, 1 PIF
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o= Facts about HIPA

* In operation since 1974, stepwise upgraded

* 1.44 MW max, 1.3 MW routine operation (since mid 2016 limited to ~1MW)
* Low losses, high efficiency ring sector cyclotron (99.98% extracted beam)
* Typical availability: 90%

* Charge delivered to meson production targets: ~9 Ah/year
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e == The 590 MeV, 1.4 MW Proton Channel

5mm Graphite, 1,5% Beam Absorption
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s

Beam Transport to SINQ
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Beam distribution at SINQ target
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12 Slits in TE:

3% Beam Intensity

Modulation
Beam Diagnostics (until 2016):
* Beam Loss / Intensity Monitors
* Profile Monitors (wire scanners)
* Aperture Foils / VIMOS
* No BPMs!
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(] Open Issues of SINQ Beam Transport

Keep stable beam centring on SINQ
> Difficult because of missing BPMs!
> Profile monitors help but no continuous measurement

Maintain beam footprint at SINQ
> VIMOS optical monitor, no quantitative information about footprint
> Beam envelope fit from profile measurements (~1/week)

Reduce beam line activation due to Halo from TE
*> Manual fine tuning of Halo Scrapers
> Beam Losses minimization through manual optics and centring adjustments looking at BLMs

Understand Beam Losses through TE and Collimators
> Two intensity monitors (MHC5/6) need frequent recalibration
1.e. determination of transmission through TE relies on simulations

Target protection

> Monitor Beam Transmission through TE (5% sensitivity because of TE-Slits)
> VIMOS (limited speed and tricky image interpretation)

> KHNY30 vertical slit detecting TE bypassing beam

Key Motivation: Failure of SINQ T11 on 25.06.2016 (see B. Blau's Talk, Mo 11:35)

PSI, 15.10.19
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(= Potentially Critical Issue: TE-Bypassing Beam

Non-scattered Proton Beam by-passing TE graphite

wheel (55m upstream of SINQ) makes it to SINQ Hotspots locations at SINQ
Target and creates a hot spot Bottom View
Simulation Initial Conditions: Bending s Berg

Plane (Y)

Beam width: 20=1.5mm, TE width: 6mm
Beam 1.5mm shifted at TE, ~3% Bypassing Beam

c
£
Simulation Results: &
Q
Hot-Spot direction: Aare (I/r depending on where the beam bypasses TE) @
Hot-Spot radius: ~18mm
Hot-Spot Max distance from SINQ-Target center: ~33mm « | N >
| Non-Bending
Beam Peak Intensity in the HS: ~2x larger than usual one Plane (X)
=
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TE-bypassing beam but: S
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(15 SINQ Beam Line - Additional Diagnostics 2017 -

From 2016: starting considering additional diagnostics for SINQ beam line:
New elements installed during 2017 and shutdowns.
More to come!

Beam Positioning System
integrated in SINQ Target

4-Strip Secondary
Emission Monitor

QHIZ27
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== Additional Beam Loss Monitors

5 new BLM installed in SD2017

Beam Positioning System
integrated in SINQ Target

4-Strip Secondary
Emission Monitor

* Original BLMs mainly installed on the bottom side of beam line (MHI34-39)
* Top/Bottom beam loss asymmetry expected due to dispersion function
« Additional b monitors assess this asymmetry

* Measurements by MHB34b, MHB35b and MHB39b meet expectations

PSl, 15.10.19 Page 10
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«(-{j» Absolute Bergoz Current Monitor installed in SD2017

Beam Positioning System
integrated in SINQ Target

4-Strip Secondary
Emission Monitor

« 2" harmonic resonators provide fast but relative beam current measurement
* Beam transmission not precisely measurable

* One Bergoz® absolute current monitor installed in 2009 upstream of TM

* Second Bergoz® installed in 2017 in SINQ beam line

* ldea: Precise transmission measurement and reliable calibration procedure for the
resonators

PSI, 15.10.19 Page 11
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=(-{» New Beam Position and Second Moment Monitor (SD2017)

Beam Positioning System
integrated in SINQ Target

I" I P B = —[VIMOS
@ KHN33]
@ 2 4-Strip Secondary KHN32

Emission Monitor

* New monitor conceived and built at PSI

« 8 broad-band magnetic pickup coils

* Measures the moments M=0, 1, 2 of the proton beam magnetic field
* First prototype for potential integration of BPMs in SINQ-BL

* First measurements of heam current and position in 2017

* Calibrations for determination of Beam “Ellipticity” (M=2) still ongoing
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(3 New 4-Strip SE-Monitor as TE-Missing Beam Monitor

Beam Positioning System
integrated in SINQ Target

Correct Beam

4-Strip Secondary

Emission Monitor

Beam Missing TE

 Protons missing TE shifted vertically according to dispersion function
* New SE-Monitor installed in SD-2018 closed to KHNY30 slit
* ldea: assist (eventually replace) bulky and loss generating KHNY30 slit

* Setup: 4 - 20pum Molybdenum foil strips on both sides of the beam generate SE-
electrons when hit by proton beam

* ~1% protons missing TE reliably detected

Negligible beam losses according to simulations and measurements

PSl, 15.10.19 Page 13
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B

SINQ Temperature Based Beam Positioning System

Beam Positioning System
integrated in SINQ Target

=
KHN33 I
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Emission Monitor
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* SINQ Target T13 furnished with temperature based beam positioning system

* 4 Sensors at the Target rim / 2 Sensors in the center (rowl2 and 14)

* Reliable determination of beam position

PSI, 15.10.19
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(= SINQ Temperature Based Beam Positioning System

SINQ Temperature Beam Positioning System 212/Z14 (23.08.2018) Reihe 20 fe-5 | TEPS-Thersolesen
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* SINQ Target T13 furnished with temperature based beam positioning system
* 4 Sensors at the Target rim / 2 Sensors in the center (rowl2 and 14)

* Reliable determination of beam position

* Good simulations/measurements agreement for 2 central sensors
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(= SINQ Temperature Based Beam Positioning System
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* SINQ Target T13 furnished with temperature based beam positioning system
* 4 Sensors at the Target rim / 2 Sensors in the center (rowl2 and 14)

* Reliable determination of beam position

* No simulations/measurements agreement for 4 outer temperatures: larger halo than
expected
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(13 New Method to Center the Beam on TE

I Issue: horizontal centering of proton beam (20=1.5mm) on 6mm wide graphite wheel TE
Risk: TE-missing beam delivers hotspot at SINQ target

Method (so far): transmission measurement not very sensitive due to slits in TE

New ldea: grooved TE introduces sizeable modulation of beam current if beam not centered
First Tests with Prototype TE: July-September 2019

Groove Depth: 0.3, 0.5, 0.7, 0.9 mm

Modulation Freq: 114Hz (left), 138Hz (right)
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(= Improving Beam Line Simulation: Motivation

Motivation: understanding beam losses on Target and Collimators essential step to
* determine and keep beam transmission under control

* determine beam intensity at SINQ

* Further beam line development

* cross check measurement of newly installed Bergoz Monitor

Tool employed so far: Turtle » poor geometry modelling, lacks inelastic scattering

New Ildea: complement Turtle with MCNPX for TE and collimation sections

Simulation approach:

Start with 10M protons at TM-IN

Turtle between TM-IN and TE-IN

MCNPX between TE-In and KHE3-OUT (last TE collimator)
Turtle between KHE-OUT and KHN31-IN (first SINQ collimator)
MCNP between KHN31-IN and SINQ target

Comparison: pure Turtle, MCNPX/Turtle and measurements

PSI, 15.10.19
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(= Improving Beam Line Simulation: Results (l)
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== Improving Beam Line Simulation: Results ()

SINO Target Wincdow
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(= Improving Beam Line Simulation: Conclusions

 MCNPX/Turtle predicts larger losses and huge tails after TE collimators
 MCNP/Turtle tails produce higher losses between KHE3 and MHC6

 MCNPX/Turtle distribution matches the beam envelope in the x plane at SINQ
Target

 Beam transmission compilation (in %):

Location Beam Trans. (TE40) Beam Trans. (TE60)
Turtle | MCNP| Meas. Turtle | MCNP| Meas.
T™ in 100 100 100 100 100 100
TE in 97.7 97.7 97.7 97.7
KHE3 out 69.9 65.9 57.3 52.6
MHC5 69.2 63.7 56.5 50.2
MHC6 68.6 62.0 65.9 55.9 48.6 53.3
KHN31 in 68.6 62.0 55.9 48.6
SINQ 68.4 61.1 55.7 47.4

* Neither Pure Turtle nor MCNPX/Turtle in agreement with measurement

— Further investigation necessary!
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(13 Conclusions

« After SINQ T11 failure, a campaign towards an improved control and thorough
understanding of the proton beam delivery to SINQ has been launched

* New diagnostic elements already installed allowing
* Better understanding of beam losses
* Monitoring of beam position / width at SINQ target
* Improved detection of TE-bypassing beam
* Absolute measurement of beam intensity

* New beam line simulations making use of MCNP(X) are being carried out in order
to assess losses on targets and collimators
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(13 Outlook

* First tests of fast detection of off-center beam at TE look very promising and will
be pursued aiming at its implementation in the MPS.

* Temperature based SINQ beam centering system will be further developed
* Possible future implementation of BPMs in the SINQ beam line under study

* New fast and more flexible electronics for beam loss monitors being developed,
commissioning of first prototypes foreseen for 2021

* Further development of beam losses simulation ongoing

* Machine Learning project aiming at automatic control of beam footprint on SINQ
as well as beam interlock forecasting started beginning 2019

— Still a lot of work (and fun!) to come!

PSI, 15.10.19 Page 23
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Thank you!
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BS 1.4 MW Beam Transport

1.4 MW Beam Envelopes from Cyclotron Extraction to SINQ Target (with Magnet and Collimator Apertures)

y (mm) Black arrows: collimator apertures I_H_I I_”_I |‘H |_H H

120 r H |_|_|
SINQTarget

Il l il [ 69% losses

80 [

40 |

40 |

80 |

L &x, &y emittance in mm-mrad Target M: Target E:

120
1.0% losses 30% losses
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25 50 75 10 2 (m)

Peak beam current density on target M and E: 200 kW/mm?

Average losses away from targets: 0.6 Wim
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= -{j» TargetE Region

Target Wheel
9% beam loss

Backward Target
Schielding Chamber

Collimators 2&3
15% beam loss

C2 & C3 absorb 200 kW beam (2.2 mA)!!!

Current design for max 2.5 mA beam

New design (3.0 mA ) completed, installation expected by March 2017

PSI, 15.10.19
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(13 Machine Protection System

« 1.3 MW proton beam with ox = oy =1 mm [—~ TM and TE regions| melts beam pipe in = 10 ms

* MPS based on ca. 150 interconnected very fast (<100ps) VME modules treating about 1500 signals

* PSI MPS can generate a beam interlock in <5 ms

* MPS gets signals from:

Magnet power supplies
BPMs
Beam loss monitors (110 ion chambers)

Current monitors (beam transmission)

Halo monitors

Temperature sensors (collimators)

VIMOS tungsten mesh (SINQ beam footprint)
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(= Setup and Monitoring: Beam Loss Monitors

Simple and reliable ion chambers as beam loss monitors with warning and interlock limits

YOR_TARGET-E NACH_TARGET-E

— il

Actual Loss

chamber signal
=01 nA
.1-1 nA
1-10 nA
10-100 nA

100-1000 nA
j 1000-50000 nA

Loss Measurements employed for a fast machine setup!

AAAAA
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s

Setup and Monitoring: Aperture Foils

Segmented foils of nickel/molybdenum installed in front of collimators and measuring
the balance of right and left, up and down scraped beam currents
(Target E and SINQ Target regions)

EF-03-2003 034526 TARGET E / SIWO BLEHWDEM
MHT REE 636 A
MRS 165 P&
MHCS 1226 ua / .00 uh 017 pA
IAHCE 1220 Pk 460 pa
m00 uh
Zn . A W
wn 1.35 ph
g_d7 ph
MHES - : MHB32 MHB34 0.2 vA
0.20 0 0005 pho 0.00E pA 00 000wk
II [REN) MHBZ21 ' 000 A
8]
MHES [ 4.5 s ] MHB31 omw ua MHB33 oo ua
A Mezger

Page 29




PAUL SCHERRER INSTITUT

(3 Setup and Monitoring: Beam Transmission

Beam current transmission monitors compare the beam current at
different spots for detecting loss of beam

hlegapie Target E transmission data
T T T T T

100 % transmission in main cyclotron

100 % transmission in transfer lines,
(except for split beams)

97 % transmission of thin target M

new transmission for Megapie

70 % transmission of thick target E

i I i i I i I i i
200 400 GO0 800 1000 1200 1400 1600 1800 2000
MHC4 beam current [WA]

e -
splitter
| | \‘5\
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(= Setup and Monitoring: VIMOS

Tungsten Grid located 40 cm upstream of the SINQ Target visualized by optic-
fibers and camera gives an image of the thermal radiation

* VIMOS image is digitized to detect
abnormal irradiation condition
(overfocusing and/or missteering)

* 50 frames / second

09:34:44
04/22/09

MMMMM 1422972
ear

* If 4 subsequent frames deviate from _ ’
thresholds an interlock signal is sent - , '

oCenvl: 242
363
2%

* Deviation is calculated through
intensity ratios and absolute
. |IH\HIII PEErrrr e rerrrrrrrprerrrrrreyprerrnt
maximum values. L

Courtesy K.Thomsen
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(= Beam Optimization: Optics Determination

Beam Profile Monitors determine beam widh
at several locations along beamline

~120 monitors in the high power section,
mainly Wire Scanner

Fast (off-line) beam optics and
emittance determination
through TRANSPORT envelope fit

M B
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s

Further Improvement: Beam Tomography
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