

Detector rate estimate for the BIFROST instrument at ESS

EUROPEAN

SPALLATION SOURCE

Milán Klausz^{1,2,3}

Kalliopi Kanaki², Thomas Kittelmann², Rasmus Toft-Petersen^{2,4}, Péter Zagyvai^{1,3}, Jonas Okkels Birk, Martin Olsen⁴, Richard Hall-Wilton^{2,5}

Milan.Klausz@esss.se

HAS Centre for Energy Research European Spallation Source ESS ERIC BUTE Institute of Nuclear Techniques Technical University of Denmark Università degli Studi di Milano-Bicocca

> ICANS XXIII Chattanooga, 17 October 2019

Outline

- **BIFROST Instrument**
- Simulation Tools
- Simulation Model
- Results
- Outlook

ESS - Instruments

Location of BIFROST

Bifrost instrument

- High flux indirect geometry cold spectrometer
- Small sample (1 mm³) in extreme environment
- Relatively simple beam transport and conditioning system
- Option to use full ESS pulse in low resolution mode

Scattering Characterization System

Scattering Characterization System

- 10¹⁰ n/s/cm² flux on sample
- Detect weak inelastic signal
- Survive intense Bragg peak
- Important to define the incident detector rate

Outline

- BIFROST Instrument
- Simulation Tools
- Simulation Model
- Results
- Outlook

EUROPEAN SPALLATION SOURCE

Gı	Jid	le

Sample + analyzers

Detectors

EUROPEAN SPALLATION SOURCE

Guide

Sample + analyzers

Detectors

Simulation Tools - McStas

- Collaboration:
- Simulation of neutron scattering instruments and experiments
- Monte Carlo ray-trace algorithm
- Cross-platform, open source
- Version 2.5 (December, 2018)

- DTU Physics
- University of Copenhagen
- Paul Scherrer Institute
- Institut Laue-Langevin

EUROPEAN SPALLATION

SOURCE

EUROPEAN SPALLATION SOURCE

Guide

Sample + analyzers

Detectors

Simulation Tools: Geant4 + DG Framework

- General purpose
- Developed in CERN
- Application in various fields
- Detector Group Framework
 - Code repository + build system

EUROPEAN SPALLATION

SOURCE

- Tools, issue tracker, wiki
- Geant4, C++, Python

Geant 4

Geant4 is a toolkit for the simulation of the passage of particles through matter. Its areas of application include high energy, nuclear and accelerator physics, as well as studies in medical and space science. The two main reference papers for Geant4 are published in *Nuclear Instruments and Methods in Physics Research* A 506 (2003) 250-303, and *IEEE Transactions on Nuclear Science* 53 No. 1 (2006) 270-278.

Applications

A <u>sampling of applications</u>, technology transfer and other uses of Geant4

User Support

<u>Getting started, guides</u> and information for users and developers

Publications

<u>Validation of Geant4,</u> results from experiments and publications

Collaboration

<u>Who we are:</u> collaborating institutions, <u>members</u>, organization and legal information

T. Kittelmann, et al., Geant4 based simulations for novel neutron detector development, J. Phys. Conf. Ser. 513 (2014) 022017

EUROPEAN

SPALLATION

SOURCE

 \rightarrow

EUROPEAN

SPALLATION

SOURCE

Monte Carlo Simulation: MCPL

- Monte Carlo Particle List
- Binary format
- Open source

- Compatible MC tools
 - McStas
 - McXtrace
 - Geant4
 - MCNP6, MCNPX

View on GitHub 🕥	
MCPL Monte Carlo Particle Lists	
home get usage hooks about contact	
tar.gz .zip	
Welcome to the home of MCPL, a binary file format for usage in physics simulations.	
MCPL files contain lists of particle state information, and allows for easy storage and interchange of particles between various Monte Carlo simulation applications. It is implemented in portable C code and is made available to the scientific community, along with converters and plugins for several popular simulation packages.	

EUROPEAN

SPALLATION

SOURCE

EUROPEAN

SPALLATION

SOURCE

37

Simulation Tools: NCrystal

- Collaboration: Library + tools for thermal neutron transport in crystals
- Cross-platform, open source, v1.0.0
- Multiple interfaces (Geant4, ____ McStas, ...), validated results

- Xiao Xiao Cai (CNCS)
- Thomas Kittelmann (ESS)
- Supported by:
 - BrightnESS (No 676548)

X. X. Cai, T. Kittelmann, NCrystal: a library for thermal neutron transport, Computer Physics Communications (2019)

- Enables Monte Carlo simulation of neutrons in crystals
- Single-crystals
- Polycrystalline/powder materials
- Anisotropic layered crystals: pyrolytic graphite
- Coherent elastic (Bragg) diffraction
- Includes "background" (inelastic/incoherent)
 - Harmonic approximation
 - Incoherent approximation
 - Debye approximation

Simulation Tools - Options SOURCE Sample + Guide **Detectors** analyzers **McStas McStas** Gea **NCrystal** n GE

EUROPEAN SPALLATION

EUROPEAN SPALLATION

SOURCE

Outline

- BIFROST Instrument
- Simulation Tools
- Simulation Model
- Results
- Outlook

McStas Model – Full Instrument

- ESS Butterfly source
- 4 choppers, all guide sections
- Authors: Rasmus Toft-Petersen Jonas Okkels Birk Martin Olsen

McStas Model – Analyzer-Detector system

EUROPEAN SPALLATION SOURCE

McStas Model – Analyzer-Detector system

Geant4 Model – Analyzer-Detector system

Outline

- BIFROST Instrument
- Simulation Tools
- Simulation Model
- Results
- Outlook

Change of energy spectrum after sample

EUROPEAN SPALLATION SOURCE

Intensity on detector

Time averaged incident rate

EUROPEAN SPALLATION SOURCE

Peak instantaneous incident rate

Conclusion

- Parameters:
 - Sample: Y₂O₃ single-crystal, hkl=2,-2,-2 (d_{hkl} = 3.0724 Å) cylindrical h=d=15 mm, mosaicity = 60 arcmin
 - Analyzer: thickness = 1 mm, mosaicity = 60 arcmin
 - Source power = 5 MW
 - PSC opening time = 5 ms (full ESS pulse)
- Time averaged incident rate on one He-3 tube: 4e7 Hz
- Peak instantaneous incident rate on one tube: 1e9 Hz

Effect of sample mosaicity

EUROPEAN SPALLATION SOURCE

 Sample mosaicity matching the analyser mosaicity (60 arcmin) gives the highest incident rates

Effect of sample size

- Detector rates drop significantly with smaller sample size:
- 15 mm -> 12 mm (h=d) a factor of 1.4 rate drop
- 15 mm -> 3 mm (h=d) a factor of 40 rate drop

Outline

- BIFROST Instrument
- Simulation Tools
- Simulation Model
- Results
- Outlook

Geant4 model with all Q channels

Ongoing and possible studies

- Simulation of calibration sample (vanadium) with full model
- Study the effect of PSC opening time on energy resolution and rates

- Beryllium filter + radial collimator
- Detectors
- Cross-talk shielding
- Backscattering
- Connect to Mantid

- Xiao Xiao Cai, Peter Willendrup
- Data Management&Software Centre (DMSC)

Thank you for your attention!