User-friendly software for modeling collective spin wave excitations

Steven Hahn, Garrett Granroth, Ovidiu Garleq

Neutron Scattering Division Oak Ridge National Laboratory

Inelastic Neutron Scattering

Calculating Spin Waves

- Write Hamiltonian in terms of local spin operators

$$
\overline{\boldsymbol{S}}_{i}=\underline{U}_{i} \boldsymbol{S}_{i}
$$

- Holstein-Primakoff transformation

$$
S_{+}=\sqrt{2 S} a \quad S_{-}=\sqrt{2 S} a^{\dagger} \quad S_{z}=S-a^{\dagger} a
$$

- expand in powers of $\frac{1}{\sqrt{S}}$

$$
H=H_{0}+H_{1}+H_{2}+\ldots
$$

- Determine spin configuration that minimizes the classical energy $\left(\mathrm{H}_{0}\right)$.
- Check that the first order terms $\left(\mathrm{H}_{1}\right)$ vanish.

Calculating Spin Waves, cont.

- Determine elements in matrix

$$
H_{2}=\sum_{\boldsymbol{q}} \boldsymbol{v}_{\boldsymbol{q}}^{\dagger} \cdot L(\boldsymbol{q}) \cdot \boldsymbol{v}_{\boldsymbol{q}} \quad \boldsymbol{v}_{\boldsymbol{q}}=\left(a_{\boldsymbol{q}}^{1}, \ldots, a_{\boldsymbol{q}}^{M}, a_{-\boldsymbol{q}}^{1 \dagger}, \ldots, a_{-\boldsymbol{q}}^{M \dagger}\right)
$$

- Bogoliubov transformation
- basis transformation such that H becomes diagonal

$$
H_{2}=\sum_{\boldsymbol{q}} \boldsymbol{w}_{\boldsymbol{q}}^{\dagger} \cdot L^{\prime}(\boldsymbol{q}) \cdot \boldsymbol{w}_{\boldsymbol{q}}
$$

- Inelastic neutron scattering cross section
- spin-spin correlation function

$$
\begin{aligned}
& S_{\alpha \beta}(\mathbf{q}, \omega)=\frac{1}{2 \pi N} \int d t e^{-i \omega t} \sum_{i, j} e^{-i \mathbf{q} \cdot\left(\mathbf{R}_{i}-\mathbf{R}_{j}\right)}\left\langle S_{i \alpha}(0) S_{j \beta}(t)\right\rangle \\
& \left\langle\boldsymbol{S}_{i}^{\alpha}(0) \boldsymbol{S}_{j}^{\beta}(t)\right\rangle=\left\langle\left(\underline{U}_{i}^{-1} \overline{\boldsymbol{S}}_{i}(0)\right)^{\alpha}\left(\underline{U}_{j}^{-1} \overline{\boldsymbol{S}}_{j}(t)\right)^{\beta}\right\rangle \quad \text { JT Haraldsen, RS Fishman, J. Phys.: Condens. Matter } 21216001 \text { (2009) }
\end{aligned}
$$

Introducing SpinWaveGenie

- Https://GitHub.com/SpinWaveGenie/SpinWaveGenie
- BSD 3-clause license
- Platforms
- MacOS (10.13 High Sierra or later)
- Homebrew formula
- Linux (GCC 7+)
- .spec file for building rpms
- Windows (MSVC 2017)
- Required Dependencies
- Boost, Eigen, Python, Numpy

Simplifying Spin Wave Calculations

- Python interface
- Written in C++

pybine 11

- Abstraction \& Encapsulation
- Generate unit cell cell = swg.Cell() cell.setBasisVectors(1.0,10.0,10.0,90.0,90.0,90.0)
- Cell contains Sublattices

SpinO = swg.Sublattice()
spinO.setName("Spin0")
spinO.setMoment(1.0,0.0,0.0)
cell.addSublattice(SpinO)
spinl = swg.Sublattice()
spinl.setName("Spinl")
spinl.setMoment(1.0,180.0,0.0)
cell.addSublattice(spinl)
类OAK RIDGE \mid Hish fux \mid spatat

Simplifying Spin Wave Calculations

- Sublattice contains atoms
cell.addAtom("Spin0",0.0,0.0,0.0)
cell.addAtom("Spinl",0.5,0.0,0.0)
- Interactions are between sublattices

builder $=$ swg.SpinWaveBuilder $($ cell $)$
interactions = swg.InteractionFactory()
direction $=$ [1.0,0.0,0.0]
builder.addInteraction(interactions.getAnisotropy("D",1.0,direction,"spin0")) builder.addInteraction(interactions.getAnisotropy("D",1.0,direction,"spinl")) builder.addInteraction(interactions.getExchange("J",-1.0,"spinO","spinl",0.49,0.51))
- Calculating spin waves
afm = builder.createElement()
afm.createMatrix (0.1,0.0,0.0)
afm.calculate()
results $=$ afm.getResults()

Adding interactions

- Inherit from abstract base class
class Interaction \{
public:
virtual void calculateEnergy(const Cell \&cell, double \&energy) $=0$;
virtual void calculateFirstOrderTerms(const Cell \&cell, Eigen::VectorXcd \&elements) = 0;
virtual void calcConstantValues(const Cell \&cell) $=0$;
virtual void updateMatrix(const Eigen::Vector3d \&K, Eigen::MatrixXcd \&LN) const = 0;
\};
- InteractionsFactory

Available Interactions

- Isotropic Exchange

$$
H_{\text {exch }}=-\frac{1}{2} \sum_{i \neq j} J_{i j} \mathbf{S}_{i} \cdot \mathbf{S}_{j}
$$

Dzyaloshinskii-Moriya

$$
H_{D M}=-\frac{1}{2} \sum_{i \neq j} \mathbf{D}_{i j} \cdot \mathbf{S}_{i} \times \mathbf{S}_{j}
$$

- Single-lon Anisotropy

$$
H_{\text {anis }}=\sum_{i} K_{i}\left(\hat{\boldsymbol{u}}_{i} \cdot \mathbf{S}_{i}\right)^{2}
$$

External Magnetic Field

$$
H_{B}=-\mathbf{B} \cdot \sum_{i} \mathbf{S}_{i}
$$

Resolution Function

```
class OneDimensionalShapes {
public:
    virtual void setTolerance(double InTolerance) = 0;
    virtual double getMinimumEnergy() = 0;
    virtual double getMaximumEnergy() = 0;
    virtual void setFrequency(double frequency) = 0;
    virtual double getFunction(double energy) = 0;
};
- OneDimensionalFactory
```

- EnergyDependentGaussian
- Parameters for ARCS, SEQUOIA, CNCS
- https://dgsres.mcvine.org

Post processing

class SpinWavePlo†
\{
public:
virtual const Cell \&getCell() const $=0$;
virtual const Energies \&getEnergies() $=0$;
virtual void setEnergies(const Energies \&energies) = 0;
virtual std:::vector<double> getCut(double kx, double ky, double kz) = 0;
\};

- Combine multiple functions by making one the input of other

Additional Post-Processing

- Convolution with resolution function

$$
I\left(\boldsymbol{Q}_{0}, \omega_{0}\right)=\iint F_{Q}^{2} S(\boldsymbol{Q}, \omega) R\left(\boldsymbol{Q}-\boldsymbol{Q}_{0}, \omega-\omega_{0}\right) d \boldsymbol{Q} d \omega
$$

- Integrating over unseen directions

$$
I\left(Q_{x}, \omega\right)=\frac{1}{A} \iint I(\boldsymbol{Q}, \omega) d Q_{y} d Q_{z}
$$

- Powder Averaging

$$
I(Q, \omega)=\int \frac{d \Omega_{\hat{q}}}{4 \pi} I(\boldsymbol{Q}, \omega)
$$

- Constant-energy cuts

Output Formats

- 1 Dimension
- Frequency/intensity pair
- NumPy array
- 2 Dimensions
- NumPy array
- ASCII file
- 3 Dimensions
- vtkStructuredGrid

YFeO_{3}

$$
\begin{aligned}
H= & -J_{1} \sum_{\langle i, j\rangle} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j}-J_{2} \sum_{\langle i, j\rangle^{\prime}} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j} \\
& -D_{1} \sum_{\boldsymbol{R}_{j}=\boldsymbol{R}_{i}+a(\hat{x} \pm \hat{y})} \hat{y} \cdot \boldsymbol{S}_{i} \times \boldsymbol{S}_{j} \\
& -D_{2} \sum_{\boldsymbol{R}_{j}=\boldsymbol{R}_{i}+a(\hat{x} \pm \hat{y})} \hat{z} \cdot \boldsymbol{S}_{i} \times \boldsymbol{S}_{j} \\
& -K_{a} \sum_{i}\left(\boldsymbol{S}_{i}^{x}\right)^{2}-K_{c} \sum_{i}\left(\boldsymbol{S}_{i}^{z}\right)^{2}
\end{aligned}
$$

S E Hahn et al, PRB 89, 014420 (2014)
$\mathrm{Mn}_{1-\mathrm{x}} \mathrm{Co}_{x} \mathrm{~V}_{2} \mathrm{O}_{4}$

$$
\begin{aligned}
H= & -J_{A B} \sum_{(p, q)(i, j, k, l)}\left(\boldsymbol{S}_{p}+\boldsymbol{S}_{q}\right) \cdot\left(\boldsymbol{S}_{i}+\boldsymbol{S}_{j}+\boldsymbol{S}_{k}+\boldsymbol{S}_{l}\right) \\
& -J_{B B}^{a b}\left(\sum_{i, j} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j}+\sum_{k, l} \boldsymbol{S}_{k} \cdot \boldsymbol{S}_{l}\right) \\
& -J_{B B}^{c} \sum_{(i, j)(k, l)}\left(\boldsymbol{S}_{i}+\boldsymbol{S}_{j}\right) \cdot\left(\boldsymbol{S}_{k}+\boldsymbol{S}_{l}\right) \\
& +D_{A} \sum_{r=p, q}\left(\hat{z} \cdot \boldsymbol{S}_{r}\right)^{2}+D_{B} \sum_{s=i, j, k, l}\left(\hat{u}_{s} \cdot \boldsymbol{S}_{s}\right)^{2} .
\end{aligned}
$$

J. Ma, et al., Phys. Rev. B 91, 020407(R) (2015)

$\mathrm{Mn}_{1+\mathrm{x}} \mathrm{Sb}$

MnO

- Unit cell setup with Atomic Simulation Environment

- Powder calculation using Monte Carlo Integration

G. Pepy J. Phys. Chem. Solids. 1974. Vol. 35. pp. 433-444.

Conclusions

- SpinWaveGenie abstracts and automates large portions of the work required to perform a detailed spin wave analysis in non-collinear systems.
- Reduces time between measurement and publication
- Opens inelastic neutron scattering to a larger community of scientists and engineers
- Post-processing routines for direct comparison with experimental data

Questions?

Https://GitHub.com/SpinWaveGenie/SpinWaveGenie

