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Inelastic Neutron Scattering
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with the interpretation of the gross (high-frequency)
spin-wave dispersion using a full four-sublattice
model and 3e=3'-„,„,„.
In Section IV the behavior of the low-energy spin

waves, particularly at temperatures near the spin
reorientation, are studied. It is then vital to use
the full Hamiltonian, the consequences of which
have been most extensively studied for two-sublat-
tice models obtained by considering only the motion
of the composite variables

5844 = ( 8 f1+ Sls}

~.g(Q, ~) = Q Fg (Q)Fg (Q) lmX&.'(Q, ~),
X, )t~

where F,(Q) = U~E, (Q), etc. With this representa-
tion a remarkable simplification occurs at recip-
rocal-lattice points, i. e. , when Q=G=(h, I4, l),
namely, that one and only one structure factor
F,(G) is nonsero. We can therefore classify all

TABLE I. Classification of reciprocal-lattice points
for the high-temperature RE Fe03 structure.

Reflection type (hkl)

(even, even, even), (odd, odd, even)
(odd, even, even), (even, odd, even)
(odd, even, odd), (even, odd, odd)
(even, even, odd), (odd, odd, odd)

» 4a =(5sim+ 5s44)

The problem of discussing neutron-scattering re-
sults in RE Fe03 by a two-sublattice model is
somewhat more complex than for measurements of
macroscopic quantities, e.g. , in microwave-reso-
nance experiments. The following is a discussion
of the extent to which a simplification is possible.
Define a new set of spin variables 6s» by a unitary
transformation on 6s~,
5s„=U„5s„(~=O, P, q, ft).

Specifically (suppressing the l index),

5sc= g(5s, +5s, +5s, +5s,)
1= a(5S, + 5S,),

5l = ~(5s, + 5s, - 5s, —5s,),
5s c = ga5s, —5s2 + 5s, —5s,)

i.= 2(5S4 —5S~),

SR g( sl SR 83+ 84)'

Notice that the variables 5s~ and 6s„cannot be ex-
pressed in terms of the "two-sublattice" variables.
Making the same transformation of variables on
Eq. (3) gives
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FIG. 3. Magnon dispersion curve along several sym-

metry directions in TrnFeO& in the G„configuration.
The fits to the data edith only nn exchange (dotted line)
and with nn and nnn exchange (solid line) are also shown.

reciprocal-lattice points by a label O, P, Q, R ac-
cording to whether Eo, E~, Ez, or E~ is nonzero.
The classification is shown in Table I. [Table I
is written for the high-temperature RE FeO, struc-
ture (the G„configuration of Fig. 2). It applies to
the low-temperature (G,) form by interchanging H
and I, components. ] In studying long-wavelength
magnetic fluctuations, the reciprocal-lattice vec-
tors about which the observations are performed
thus divide into two categories: (i) P and R--type
reflections which involve fluctuations that cannot
be treated within the context of a two-spin model.
These are the high-frequency "exchange" modes
which are adequately treated by R=R, ,„~. (ii)
0- and Q-type reflections which involve the low-
lying "antiferromagnetic" modes which are de-
scribable with a two-spin formalism. These
modes have zero frequency in the absence of an-
isotropy.

II. EXPERIMENTAL

The single crystals of TmFeO, and ErFeO, were
grown at Bell Laboratories by the flux method de-
scribed previously. The TmFe03 crystal was
plateletlike with dimensions 12&15&&4 mm and the
c axis perpendicular to the plate. The ErFe03
crystal was considerably smaller and approximate-
ly cubic in shape with a 5-mm edge size. The
measured sample mosaics mere 0. 2' for ErFe03
and 0. 3' for TmFe03. The majority of the mea-
surements were performed in the (hOI) scattering
plane, but a study at several temperatures of the
q = 0 magnons in the (Okl) scattering plane showed
an identical behavior of the frequencies with tem-
perature. The crystals mere mounted in a tem-
perature-controlled Dewar and the temperature
regulated to better than 0. 02 'K.
The neutron-scattering measurements were

made on a triple-axis spectrometer at the Brook-
haven high flux beam reactor. For the high-energy
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X, = -g [A„,(SO„)~+A (So ) ]

+2K4 Q(SO, )'.
k=1, 2
tm;y, r

In both TmpeO3 and ErFeO3 the spin reorienta-
tion occurs near 90'K with 7'„—T, 10 K. Both
Mossbauer and neutron diffraction studies have
shown the reorientation to occur by a smoothly contin-
uous coherent rotation of all the spins. Horner
and Varma' showed that this behavior could be

understood using a free energy of the form
F(T)=F + gK (T)cos28+K cos48,

where 61 is the angle between the z axis and the
weak ferromagnetic moment and Kz(T) = —2(A„„
-A, ). Levinson et al. ' showed that this free en-
ergy could be derived from a Hamiltonian of the
form of Eqs. (l) and (5) by thermodynamic pertur-
bation theory to lowest order in (anisotropy ener-
gy/exchange energy). Applying equilibrium con-
ditions to Eq. (6) we find three distinct tempera-
ture regions, distinguished by the value of 0:
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S. E. Hahn et al. ,Phys. Rev. B, 89, 014420 (2014)S. Shapiro et al., Phys. Rev. B, 10, 2014 (1974)
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Calculating Spin Waves

• Write Hamiltonian in terms of local spin operators 

• Holstein–Primakoff transformation

• expand in powers of 

• Determine spin configuration that minimizes the classical energy (H0). 

• Check that the first order terms (H1) vanish.

H = H0 +H1 +H2 + ...

1p
S

S̄i = U iSi

Sz = S � a†aS+ =
p
2Sa S� =

p
2Sa†
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Calculating Spin Waves, cont.

• Determine elements in matrix

• Bogoliubov transformation 
– basis transformation such that H becomes diagonal

• Inelastic neutron scattering cross section
– spin-spin correlation function

vq =
⇣
a1q, ..., a

M
q , a1†�q, ..., a

M†
�q

⌘
H2 =

X

q

vq
† · L (q) · vq

H2 =
X

q

w†
q · L0(q) ·wq

hS↵
i (0)S

�
j (t)i = h(U�1

i S̄i(0))
↵(U�1

j S̄j(t))
�i

FISHMAN, HARALDSEN, FURUKAWA, AND MIYAHARA PHYSICAL REVIEW B 87 , 134416 (2013)

where L(q) = L(q) · N . The inverse X−1 = N · X† · N is
required to evaluate ⟨δ|Pind|0⟩ and ⟨δ|M|0⟩.

The wave vector Q and harmonic coefficients of the cycloid
are obtained by minimizing E0 using the “trial” spin state
provided by Eqs. (2)– (4). If the spin angles on site r of layer
1 are θr and φr , then the angles on layers 1 and 2 are related
by θr+M = θr + π and φr+M = −φr . We assume that φr = τ
and φr+M = −τ are independent of site position r on layers 1
and 2.

The spin-spin correlation function is defined by

Sαβ(q,ω) = 1
2πN

∫
dt e−iωt

∑

i,j

e−iq·(Ri−Rj )⟨Siα(0)Sjβ(t)⟩

=
∑

n

δ(ω − ωn(q))S(n)
αβ (q), (A9)

where the final expression assumes that the SWs are un-
damped. The inelastic neutron-scattering cross section is42

S(q,ω) =
∑

α,β

(δαβ − qαqβ/q 2)Sαβ(q,ω)

=
∑

n,α

[1 − (qα/q )2]δ(ω − ωn(q))S(n)
αα (q), (A10)

which involves only the diagonal matrix elements of Sαβ(q,ω)
(if there is a net moment, some off-diagonal matrix elements
α ̸= β are nonzero and antisymmetric). The diagonal SW
intensities S(n)

αα (q) are given by

S(n)
αα (q) = S

8M

∣∣∣∣∣

2M∑

r=1

W (n)
r,α (q)

∣∣∣∣∣

2

, (A11)

where

W (n)
r,α (q) =

(
U−1 r

αx − iU−1 r
αy

)
X−1

r,n+2M (q)

+
(
U−1 r

αx + iU−1 r
αy

)
X−1

r+2M,n+2M (q). (A12)

Even in the absence of damping, the instrumental resolution
will broaden the δ functions in S(q,ω) in Eq. (A10). The
magnetic form factor for Fe3+ should also be included in
S(q,ω).

APPENDIX B: SPECTROSCOPIC MATRIX ELEMENTS

This section evaluates the matrix elements for the induced
electric polarization Pind and the magnetic moment M between
the ground state |0⟩ and an excited state |δ⟩ with a single
magnon at the cycloidal wave vector Q.

Since P ind
x ′ = 0, only the y ′ and z′ components are consid-

ered. Expanded about equilibrium, P ind
y ′ becomes

P ind
y ′ = λS

{
M∑

r=1

sin θr cos φr [−S[r+2],y ′ + S[r−2],y ′

+ S[r+2]+M,y ′ − S[r−2]+M,y ′ ]

+
M∑

r=1

sin θr sin φr [S[r+2],x ′ − S[r−2],x ′

+ S[r+2]+M,x ′ − S[r−2]+M,x ′ ]

}

. (B1)

After some work, we obtain the EM matrix element y ′ for SW
mode n:

⟨δ|P ind
y ′ |0⟩ = λS

√
S

2

M∑

r=1

sin θr eiq0ar
{
[cos θ[r+2] sin(φr − φ[r+2]) + i cos(φr − φ[r+2])]

(
X−1

[r+2],n+2M − X−1
[r+2]+M,n+2M

)
e2iq0a

+ [cos θ[r+2] sin(φr − φ[r+2]) − i cos(φr − φ[r+2])]
(
X−1

[r+2]+2M,n+2M − X−1
[r+2]+3M,n+2M

)
e2iq0a

− [cos θ[r−2] sin(φr − φ[r−2]) + i cos(φr − φ[r−2])]
(
X−1

[r−2],n+2M − X−1
[r−2]+M,n+2M

)
e−2iq0a

− [cos θ[r−2] sin(φr − φ[r−2]) − i cos(φr − φ[r−2])]
(
X−1

[r−2]+2M,n+2M − X−1
[r−2]+3M,n+2M

)
e−2iq0a

}
, (B2)

where q0 = 2πδ/a.
Similarly, P ind

z′ can be expanded as

P ind
z′ = λS

{
M∑

r=1

cos θr [S[r+2],x ′ − S[r−2],x ′ − S[r+2]+M,x ′ + S[r−2]+M,x ′ ]

−
M∑

r=1

sin θr cos φr [S[r+2],z′ − S[r−2],z′ − S[r+2]+M,z′ + S[r−2]+M,z′ ]

}

. (B3)

The EM matrix element z′ for SW mode n is

⟨δ|P ind
z′ |0⟩ = λS

√
S

2

M∑

r=1

eiq0ar
{
[gr,[r+2] + i cos θr sin φ[r+2]]

(
X−1

[r+2],n+2M − X−1
[r+2]+M,n+2M

)
e2iq0a

+ [gr,[r+2] − i cos θr sin φ[r+2]]
(
X−1

[r+2]+2M,n+2M − X−1
[r+2]+3M,n+2M

)
e2iq0a

− [gr,[r−2] + i cos θr sin φ[r+2]]
(
X−1

[r−2],n+2M − X−1
[r−2]+M,n+2M

)
e−2iq0a

− [gr,[r+2] − i cos θr sin φ[r−2]]
(
X−1

[r−2]+2M,n+2M − X−1
[r−2]+3M,n+2M

)
e−2iq0a

}
, (B4)

134416-8

JT Haraldsen, RS Fishman, J. Phys.: Condens. Matter 21 216001 (2009)
RS Fishman et al., Phys. Rev B 87 134416 (2013)



5

Introducing SpinWaveGenie

• Https://GitHub.com/SpinWaveGenie/SpinWaveGenie

• BSD 3-clause license

• Platforms
– MacOS (10.13 High Sierra or later)

• Homebrew formula
– Linux (GCC 7+)

• .spec file for building rpms
– Windows (MSVC 2017)

• Required Dependencies
– Boost, Eigen, Python, Numpy

https://github.com/SpinWaveGenie/SpinWaveGenie
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Simplifying Spin Wave Calculations
• Python interface

– Written in C++

• Abstraction & Encapsulation
– Generate unit cell

cell = swg.Cell() 
cell.setBasisVectors(1.0,10.0,10.0,90.0,90.0,90.0)

– Cell contains Sublattices
Spin0 = swg.Sublattice()
spin0.setName(“Spin0”)
spin0.setMoment(1.0,0.0,0.0)
cell.addSublattice(Spin0)
spin1 = swg.Sublattice()
spin1.setName(“Spin1”)
spin1.setMoment(1.0,180.0,0.0)
cell.addSublattice(spin1)

J
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J

Simplifying Spin Wave Calculations

– Sublattice contains atoms
cell.addAtom(“Spin0”,0.0,0.0,0.0)
cell.addAtom(“Spin1”,0.5,0.0,0.0)

– Interactions are between sublattices
builder = swg.SpinWaveBuilder(cell)
interactions = swg.InteractionFactory()
direction = [1.0,0.0,0.0]
builder.addInteraction(interactions.getAnisotropy(“D”,1.0,direction,”spin0”))
builder.addInteraction(interactions.getAnisotropy(“D”,1.0,direction,”spin1”))
builder.addInteraction(interactions.getExchange(“J”,-1.0,”spin0”,”spin1”,0.49,0.51))

– Calculating spin waves
afm = builder.createElement() 
afm.createMatrix(0.1,0.0,0.0)
afm.calculate()
results = afm.getResults()
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Adding interactions

• Inherit from abstract base class

class Interaction {

public:
…
virtual void calculateEnergy(const Cell &cell, double &energy) = 0;

virtual void calculateFirstOrderTerms(const Cell &cell, Eigen::VectorXcd &elements) = 0;

virtual void calcConstantValues(const Cell &cell) = 0;

virtual void updateMatrix(const Eigen::Vector3d &K, Eigen::MatrixXcd &LN) const = 0;
};

• InteractionsFactory
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Available Interactions

• Isotropic Exchange

• Dzyaloshinskii-Moriya 

• Single-Ion Anisotropy

• External Magnetic Field

Hexch = �1

2

X

i 6=j

JijSi · Sj

HDM = �1

2

X

i 6=j

Dij · Si ⇥ Sj

Hanis =
X

i

Ki (ûi · Si)
2

HB = �B ·
X

i

Si
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Resolution Function
class OneDimensionalShapes {
public:
virtual void setTolerance(double InTolerance) = 0;

virtual double getMinimumEnergy() = 0;

virtual double getMaximumEnergy() = 0;

virtual void setFrequency(double frequency) = 0;

virtual double getFunction(double energy) = 0;
};
• OneDimensionalFactory

• EnergyDependentGaussian
– Parameters for ARCS, SEQUOIA, CNCS
– https://dgsres.mcvine.org
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Post processing
class SpinWavePlot
{
public:

…
virtual const Cell &getCell() const = 0;

virtual const Energies &getEnergies() = 0;

virtual void setEnergies(const Energies &energies) = 0;

virtual std::vector<double> getCut(double kx, double ky, double kz) = 0;
};

• Combine multiple functions by making one the input of other
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Additional Post-Processing

• Convolution with resolution function

• Integrating over unseen directions

• Powder Averaging

• Constant-energy cuts

I(Qx,!)=
1

A

ZZ
I (Q,!) dQy dQz

I(Q,!) =

Z
d⌦q̂

4⇡
I(Q,!)

I(Q0,!0)=

ZZ
F 2
Q S (Q,!)R (Q�Q0,!�!0) dQ d!
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Output Formats

• 1 Dimension
– Frequency/intensity pair
– NumPy array

• 2 Dimensions
– NumPy array
– ASCII file

• 3 Dimensions
– vtkStructuredGrid
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Mn1-xCoxV2O4

J. Ma, et al., Phys. Rev. B 91, 020407(R) (2015)
J. H. Lee et al., Scientific Reports 7 17129 (2017)

RAPID COMMUNICATIONS

J. MA et al. PHYSICAL REVIEW B 91, 020407(R) (2015)
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FIG. 3. (Color online) (a) and (b) Density-of-states for AFM MnV2O4 and CoV2O4, respectively. (c) NC state of Mn1−xCoxV2O4. JAB ,
J ab

BB , and J c
BB are the exchange interactions between nearest-neighbor sites. (d) and (e) Orbital energies estimated from DFT calculations. |JA-V|

is inversely proportional to the energy gap !. Only up-spin energy levels are shown for V3+ for simplicity.

the easy-axis anisotropy DA is along the c axis while for the
B-site spins, the easy-axis anisotropy DB is along the local
⟨111⟩ direction (ûs). A range of values for SB and J ab

BB produces
fits of similar quality (SI C.2) [24]. Parameters best describing
the experimental data for Mn0.6Co0.4V2O4 with SA = 4.2µB ,
SB = 1.4µB , and J ab

BB = −8.0 meV were JAB = −1.8 meV,
J c

BB = 1.1 meV, DB = −9.1 meV, and DA = 0.4 meV.
The simulated dispersions of Mn0.6Co0.4V2O4 agree well

with the measurements, Figs. 2(d)–2(f). With Co doping we
fix the B-site (V) moment while lowering the A-site (Mn/Co)
moment. As a result, the exchange JAB for Mn0.6Co0.4V2O4
is stronger than for MnV2O4 (SI C.2) [24]. By inducing
electronic itinerancy, density-functional theory (DFT) indi-
cates that Co doping also strengthens both the structural
(c ∼ a) and magnetic (J ab

BB ∼ J c
BB) isotropies, as shown in

Figs. 3(a) and 3(b). If the JAB interactions were not enhanced
by Co doping, the remanent magnetic anisotropies along the
diagonals of the V tetrahedra would transform the V spin
state into an all-in/all-out structure. Due to the enhanced JAB ,
however, the ground state of the V spins remains the same
isosymmetric two-in/two-out state found for small Co doping.

With the orbital energies of both the A and B ions estimated
from DFT (SI D) [24], the origin of the enhanced JAB is
explained in Figs. 3(d) and 3(e). The large energy difference
(∼ 5 eV) between the occupied V and Mn d states weakens the
exchange between Mn and V. By filling the eg level, Co doping
significantly lowers the t2g level and enhances the exchange
interaction between Co and V. DFT calculations reveal that the
AFM JAB is significantly enhanced in CoV2O4 (−2.5 meV)
compared to MnV2O4 (−1.2 meV). Although the V electrons
are delocalized by Co doping, the enhanced JAB causes TCL to
grow. Furthermore, the enhanced magnetic exchange isotropy
(J ab

BB ∼ J c
BB) driven by orbital quenching [Fig. 3(b)] stabilizes

the isosymmetric NC phase and raises TNC. Therefore, the
induced itinerancy strengthens both the CL and NC phases
even without OO.

Induced itinerancy is closely related to RV-V. At 10 K,
Fig. 1(e) shows that RV-V remains almost constant up until
x = 0.2, then begins to decrease. Based on our DFT calcula-
tions, the shorter RV-V induces itinerant electronic behavior,
as shown in Figs. 3(a) and 3(b), thereby suppressing OO. Due
to the disappearance of OO by the itineracy, TS falls with Co
doping.

As outlined in Fig. 4, the isosymmetric NC states have
distinct origins for low and high x. For low Co doping, the OO
of the V ions relieves the magnetic frustration by triggering a
tetragonal structure transition (c/a < 1) and induces the two-
in/two-out spin state. The Mn-V interactions only increase the
canting angle while maintaining the two-in/two-out. If only the
isotropic V-V interactions and the remanent local V anisotropy

frustrated 
(weak anisotropy) 

all-in/all-out 
(strong anisotropy) (orbital ordering)  

V-V interaction 

A-B interaction 

? ? 

Mn Co 

  Enhanced itinerancy (x)

two-in/two-out

FIG. 4. (Color online) The hierarchical magnetic states with V-V
and V-Mn/Co interactions and the distinct origins of isosymmetric
phase transition with Co doping (x).
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FIG. 2. (Color online) (a)–(c) INS results for the magnetic excitations of Mn0.6Co0.4V2O4 at 8 K. (d)–(f) The calculated excitation spectra
using the Hamiltonian, Eq. (1). The arrow line in (c) represents the position of the constant-Q cut. (g) The constant-Q cuts at (1.75 1.75 0) along
[H H 0] direction in Mn1−xCoxV2O4 measured at 8 K, x = 0.4, 0.6, and 0.8. The curves in (g) are Gaussian fits and guides to the eye. Note
that the low-energy spin-wave branch hardens with increase of Co doping. (h) The spin-wave energy gap at the magnetic zone center (2 2 0) in
Mn1−xCoxV2O4. The curves in (h) are power-law fits.

(x = 0.8) and the V-V bond length (RV-V) shrinks from 3.013
to 2.975 Å, which increases both chemical pressure and
structural isotropy.

The structural phase diagram reflects the evolution of these
bond length and angle parameters with Co doping. Although
the crystal space group changes from Fd 3̄m (cubic) to I41/a
(tetragonal) with decreasing temperature when x < 0.8, it
remains Fd 3̄m (cubic) down to the lowest temperature studied
when x ! 0.8. By contrast, most spinel vanadates exhibit
structural transitions with decreasing temperature [6–12], so
the behavior of the x ! 0.8 samples is anomalous.

On the other hand, magnetic structures are tightly coupled to
the crystal structure and very sensitive to the Co doping level.
Below TCL, the Mn/Co moments are aligned parallel to the c
axis. Above TNC, the V3+ moments point along the c axis and
are antiparallel to the Mn/Co moments. Below TNC, the V3+

moments form the two-in/two-out configuration as observed
previously in MnV2O4 [25] and FeV2O4 [26]. The canting of
the V3+ moments away from the c axis starts below 70 K and
reaches 22.1(1.8)◦ at 10 K for x = 0.8, smaller than 35.7(1.5)◦

and 36.2(1.5)◦ for x = 0.0 and 0.2 at 10 K, respectively.
Meanwhile, the V3+ ordered moment initially increases from
0.95(4) (x = 0.0) to 1.03(7) µB (x = 0.2), then decreases to
0.61(3) µB (x = 0.8) at 10 K. The enhancement of the V3+

moment from x = 0.0 to 0.2 clearly reflects the reduced orbital
moment associated with Co doping. Contrary to the prediction
that the small Co2+ cation triggers paramagnetism [13], we find
that the ordered V magnetic moment does not disappear for
Co-rich (x ! 0.8) compounds and their ordering temperatures
(TCL, TNC) even increase with doping, as shown in Fig. 1(c).

To confirm the itinerancy-induced origin of the NC states,
the exchange interactions and anisotropies were evaluated
from the INS spectra of spin-wave excitations. Since the
interaction between the A2+ ions is known to be small [27–29],
the interactions between the A2+ and V3+ ions can be estimated
from the dispersion of the low-energy acoustic mode. For
x = 0.4, the measured dispersions along the ⟨110⟩ direction

are plotted in Fig. 2(a). Notice that two magnetic modes have
been observed, as shown in Fig. 2(c), which is the same as in
MnV2O4 [29], and the spin-wave velocities increase with Co
doping. Measured at the (220) zone center, the spin-wave gap is
plotted as a function of temperature and doping in Fig. 2(h). As
in MnV2O4 [25] and FeV2O4 [26], the spin-wave gap below
TNC is produced by an easy-axis anisotropy along the cubic
diagonal of each V tetrahedron, which also cants the V3+

moments away from the c axis. Intriguingly, this spin-wave
gap is almost independent of Co doping, Fig. 2(h). Ignoring
J ab

BB and J c
BB , the spin-wave gap would be proportional to√

JAB ×DB . We conclude that a roughly constant spin-wave
gap of about 2 meV is maintained by the balance between
the enhanced JAB and the suppressed DB associated with the
itinerancy of the V3+ ions. In particular, the suppressed DB

promotes frustration in the spinel structure [30].
Spin-wave theory was used to understand the microscopic

origin of the itinerancy-driven NC states in the absence of OO.
These calculations were based on the Hamiltonian with six
inequivalent sublattices,

H = −JAB

∑

(p,q)(i,j,k,l)

(Sp + Sq) · (Si + Sj + Sk + Sl)

− J ab
BB

⎛

⎝
∑

i,j

Si · Sj +
∑

k,l

Sk · Sl

⎞

⎠

− J c
BB

∑

(i,j )(k,l)

(Si + Sj ) · (Sk + Sl)

+DA

∑

r=p,q

(ẑ · Sr )2 + DB

∑

s=i,j,k,l

(ûs · Ss)2. (1)

The inequivalent A sites are given by subscripts p and q, and
the inequivalent B sites are given by subscripts i, j , k, and l.
Isotropic exchange constants (JAB , J ab

BB , and J c
BB) describe the

nearest-neighbor interactions, Fig. 3(c). For the A-site spins,
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FIG. 7. (Color online) (a)–(c) Neutron-scattering-intensity maps
for Mn1+δSb from data taken on SEQUOIA with Ei = 150 meV
at 10 K. The data were averaged over ±0.1 r.l.u. in the two Q-
space directions perpendicular to the x axis in each case. (d) Markers
show constant-energy cuts through the data shown in panels (a) and
(b), averaged over 20–25 meV. Solid lines show the result of fitting
Gaussians plus a flat background to the data. The gray diamonds in
the (1 0 L) cut show the region of data excluded from the fit, because
this region is dominated by the broad (0 0 1)-type scattering from the
(1 0 1) position.

Further investigation of the scattering centered on (0 0 1)
is presented in Fig. 10. Cuts taken along the (1 0 L) and
(H 0 1) directions through datasets collected at 10, 350, and
443 K are shown in Figs. 10(a) and 10(b). Because the (H 0 1)
direction is the zone boundary for the spin-wave signal [see
Fig. 6(c)], the cuts in Fig. 10(b) and the color map in Fig. 7(c)
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FIG. 8. (Color online) Low-energy data measured on CTAX
along the (H 0 0) direction through ferromagnetic position (1 0 0).
Measurements were made with energy transfer of 0.5 meV at 5, 170,
and 300 K, as indicated. The data have been normalized to number
of counts per minute. The 5 K data have been multiplied by five for
clarity.
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FIG. 9. (Color online) Spin-wave dispersion calculated for (a)
the H direction and (b) the L direction, with calculated intensities
corresponding to the (H 0 2) and (1 0 L) directions, respectively. The
white circles are the points extracted from cuts through the data [see
Fig. 7(d) and text] that were used to fit the model parameters. (c)
Depiction of exchange constants used in the Heisenberg model, from
1st to 6th nearest neighbors for Mn1 ions.

essentially show the broad signal in isolation. The (1 0 L)
direction, however, passes through the zone center for both the
spin wave and the broad signal, therefore both are observed
in Figs. 10(a) and 7(d). We show the temperature dependence
of the (0 0 1) signal in Fig. 10(c). The integrated intensity was
determined from cuts made along the (H 0 1) direction through
the limited-angular-range data measured at Ei = 150 meV
for all temperatures. The data were averaged over 10 to
20 meV and folded along H and L to improve statistics. Two
Gaussian functions on a flat background were fit to the data,
with widths constrained to be equal, but amplitudes varying
independently, and centers fixed at H = 0 and H = 1. The
resulting area of the Gaussian centered at H = 0 was corrected
for the Bose-population factor, [1 − exp(−E/kBT )]−1, at each
temperature and the result gives the integrated intensity plotted
in Fig. 10(c).

These results show that the broad, Q = (0 0 1)-centered
scattering is influenced by TSR; see Fig. 10(c). There is a
dramatic increase in intensity of the signal upon warming
past TSR, which is expected for scattering from a transverse
magnetic fluctuation as the spins reorient from ab-plane to
c-axis alignment, because the magnetic cross section depends
only on the component of the magnetic moment perpendicular
to Q. This is further supported by the observation that the
(0 0 1) scattering is more sensitive to TSR than the scattering at
(±1 0 1); compare the cuts in Fig. 10(b). These observations
are a further confirmation of the magnetic origin of the
signal and indicate coupling between this scattering and the
ferromagnetic state of the system.
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MnO
• Unit cell setup with Atomic Simulation 

Environment

• Powder calculation using Monte 
Carlo Integration

G. Pepy J. Phys. Chem. Solids. 1974. Vol. 35. pp. 433-444.
G. E. Granroth et al., in progress
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Conclusions

• SpinWaveGenie abstracts and automates large portions of the work 
required to perform a detailed spin wave analysis in non-collinear 
systems.
– Reduces time between measurement and publication
– Opens inelastic neutron scattering to a larger community of scientists and 

engineers

• Post-processing routines for direct comparison with experimental 
data
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Questions?

• Https://GitHub.com/SpinWaveGenie/SpinWaveGenie
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