

Challenges of Radioactive Waste Characterisation at ISIS

Some Examples

Ruth McCrohon

Part 1 of 3 SETTING THE SCENE

PROPERTIES: SIZE OF WASTE ITEM

ISIS Metallic and Shielding wastes

PROPERTIES: Examples of large items

ISIS waste is dominated by big items , such as:

- Magnets each over 9te
- · Magnet trolleys each about 9te
- Shutters 7te each for TS1
- Shielding up to 12te per item
- Tanks such as Tank IV is 7te 12m long

PROPERTIES: Activation

NON-UNIFORM SPREAD Sometimes easy to predict and sometimes not

Material Irradiated	Examples of Resulting Radionuclides
Steel	Co-60, Fe-59, Mn-54, Co- 57, H-3
Concrete	Eu-152, Eu-154, H-3, Co- 60
Copper	Ni-63, H-3
Aluminium	Na-22

Safety-related Requirements

- Minimise worker doses
- No dust releases
- No gas releases
- Minimise secondary waste
- Minimise costs

MINIMAL INTERVENTION !!

So, now you have your waste item

- · Complete well documented history
- Correct design drawings
- Material specification known
- Experience of characterising
- Pattern of activation known

Part 2 of 3

EXAMPLES RELATING TO CHARACTERISATION

Science & Technology Facilities Council ISIS Neutron and Muon Source

Shutters: Use

) Science & Technology Facilities Council ISIS Neutron and Muon Source

Shutters: Gamma-camera

Science & Technology Facilities Council ISIS Neutron and Muon Source

Shutters: Sampling

Beam entry face			e	Side view							В	Beam exit face						
	100	153	68		100	80	21	7	3.2	1.5	0.5	0.3			0.3	0.5	0.5	
	180	332	120		180	180	30	9	3	1.2	0.4	0.4			0.4	0.2	0.5	
	370	700	310		370	170	28	17	5.8	1.4	0.7	0.6			0.6	2.6	0.5	
	140	230	90		140	140	22	10	2.5	1	0.3	0.3			0.3	0.2	0.3	
	100	138	65		100	110	18	8.5	2.3	0.9	0.1	0.2			0.2	0.1	0.2	
	40	58	30		40	34	12	5	1.4	0.7	0.3	0.1			0.1	0.3	0.2	

Dose rates across faces (µSv/h)

- Surveys
- Sampling
- High-resolution gamma-spec and modelling

Shutters : conclusions

- Shutters pattern of activation supports consideration of current holdings as LAW not HAW as originally anticipated
- Cast iron half-depth 150mm
- Concrete activation half-depth 300mm

Magnet Trolley

Magnet Trolley - sampling

Magnet Trolley

Typical activities found for trolley (approximately 10 years after activation)

	3H	55Fe	54Mn	57Co	60Co	152Eu	154Eu	
Concrete	227	-	-	-	13	33	4	Bq/g
Steel	-	239	0	0	15	0	-	Bq/g

Magnet Trolley

- Magnet trolley was found not to be HAW as initially designated
- Cost saving as was sent to special landfill rather than the LLWR (National Low Level Waste Repository)
- Use for other trolleys characterisation
 less samples and quicker

Archive photo of tankon delivery to site late 1950's

Linac Tank IV

Previous experience with copper

Conclusions re. Linac Tank IV

- Copper pipework sampled for destructive analysis of ⁶⁰Co:⁶³Ni:³H
- Steel sampled for destructive analysis of ⁶⁰Co:⁵⁵Fe:⁵⁹Fe:³H
- Surveyed & gamma-spec.in low dose rate area
- Intact disposal to landfill currently anticipated.

Part 3 of 3 LOOKING INTO THE (NEAR) FUTURE

Steps in the disposal process

To recent times:

- 1. Store
- 2. After a long time, start to think about characterisation
- 3. Search for history and designs
- 4. Take samples
- 5. Consider disposal options (BAT)
- 6. Process &/or take more measurements
- 7. Dispose

Improvements

- 1. Anticipate
- 2. Plan to measure
- 3. Store & measure
- 4. Review data held and form action plan
- 5. Final review of BAT for disposal
- 6. Dispose

What benefits will this bring?

- Lower costs due to less sampling, purchase of storage flasks.
- Better data and thus more convincing arguments for increasing some accumulation times.
- Opportunity to dispose of some wastes earlier where longer accumulation times bring no benefits.

QUESTIONS

