### 1 K refrigerator for the CLAS12 Polarized Target

Design, Construction, and First Results



# The 6 GeV 1 K Polarized Target

Oxford Built, JLab Modified

- Cantilevered Design
- Pump Tube at 30°¼off beam line and attaches to 1 K Reservoir house between 5 T Split Coil Magnet
- Refrigerator installs in pump tube and shares a common 1 K Reservoir with a vertical Target Ladder (4 targets)
- Fixed Microwaves
- Cleverly modified vertical refrigerator
- Magnet and target system share common Dewar supplied by the End Station Refrigerator (ESR) He liquidation plant



Target inserted here





# The 6 GeV 1 K Polarized Target

Oxford Built, JLab Modified

- Cantilevered Design
- Pump Tube at 30°¼off beam line and attaches to 1 K Reservoir house between 5 T Split Coil Magnet
- Refrigerator installs in pump tube and shares a common 1 K Reservoir with a vertical Target Ladder (4 targets)
- Fixed Microwaves
- Cleverly modified vertical refrigerator
- Magnet and target system share common Dewar supplied by the End Station Refrigerator (ESR) He liquidation plant

### No Superfluid Seal for Reservoir

### **Pump Tube**





### **Target Insert**





### The 6 GeV 1 K Polarized Target

Oxford Built, JLab Modified

### No Superfluid Seal for Reservoir

### NH<sub>3</sub> (melting point 195.5 K)

- Stored @ 77 K in Liquid Nitrogen
- $\rho$ NH3 > LN ~ 0.807 g/ml
- Initial Irradiation Required to Create Polarization Center for DNP
- High Radiation Hardness
- Dilution Factor 17.6%
- Peak Polarization Drops with Additional Dose

### Annealing NH<sub>3</sub>

- Prescribed Time and Temperature
- Returns Material to previous

\*Swapping Out Material and Annealing Off Line will be faster than Annealing in-situ with New Design









Irradiated NH<sub>3</sub>

TARGET GROUP

### CLAS12

#### **Space Restrictions**

- Keep out Zone for SVT cart Ends 4.08 m Upstream
- SVT Internal Ø 113.8 mm (4.48 in)
- ullet Target Keep in arnothing 103.5 mm (4.088 in)
- 5 mm Radial Clearance



Saclay CryoTarget



#### Fitting It All In

- Thin wall scattering chamber for IV
- Super insulation
- Radiant Heat Shield
- Pump Tube
- Microwave Waveguide
- NMR Coils
- 1 K <sup>4</sup>He Bath and Target





Modular 1 K Refrigerator



- 1 K Refrigerator
  - Open 79 mm bore for purpose built inserts
  - Load Lock for quick target changes

- "Rails" Insert independent of the refrigerator structure
  - Trolley Motion Actuator
  - NMR System
  - Microwave waveguide and reflector

- "Trolley" Top loading retractable 1 K
   bath
  - Removable target cells cartridges











Beam Line Installation and Transport

### **Transportation Configuration**

- Self contained for easy installation
- Refrigerator Retracted Over
   Cart
- Target assembly can be transported on flatbed



Beam Line Installation and Transport

- Alignment of target independent of Hall B Space Frame Superstructure Rails.
- All electronics and associated equipment housed on the cart.
- Line to be connected
  - o 3 Phases Power
  - LHe Transfer Line
  - ESR Helium Return/Vent





Beam Line Installation and Transport

- Alignment of target independent of Hall B Space Frame
   Superstructure Rails.
- All electronics and associated equipment housed on the cart.
- Minimum connections
  - o 3 Phases Power
  - LHe Transfer Line
  - o ESR Helium Return/Vent



Beam Line Installation and Transport

- Alignment of target independent of Hall B Space Frame
   Superstructure Rails.
- All electronics and associated equipment housed on the cart.
- Minimum connections
  - o 3 Phases Power
  - LHe Transfer Line
  - o ESR Helium Return/Vent



Beam Line Installation and Transport

- Alignment of target independent of Hall B Space Frame
   Superstructure Rails.
- All electronics and associated equipment housed on the cart.
- Minimum connections
  - o 3 Phases Power
  - LHe Transfer Line
  - ESR Helium Return/Vent



Beam Line Installation and Transport

- Alignment of target independent of Hall B Space Frame
   Superstructure Rails.
- All electronics and associated equipment housed on the cart.
- Minimum connections
  - o 3 Phases Power
  - LHe Transfer Line
  - o ESR Helium Return/Vent



Beam Line Installation and Transport

### **Target Operation**

- Cool down the refrigerator
- Throttle the Bypass valve and purge pump tube/fridge space with He
- Retract 1 K Bath
- Load target material through glove bag protected load lock
- Move target into position and cool down



1 K Refrigerator Internal Components

Modular Geometric Truss structure





1 K Refrigerator Internal Components





1 K Refrigerator Internal Components





1 K Refrigerator Internal Components

Jefferson Lab



TARGET GROUP

1 K Refrigerator Pump Tube and Heat Shields

### Pump Tube

- G10/AI 6061/AI 7075
- Epoxied Joints maintain
   Tolerance better than welds
- 10 in ID Custom Laminated G10 tube with intra-laminated 316 Stainless Steel foil
- Reduced conductive heat load by a factor of 3.5 as compared to 316 SS



1 K Refrigerator Pump Tube and Heat Shields

#### Conical HX/Heat Shield Heat Sink

Exhaust He gas(boil off) from the separator cools a conical section of the Pump Tube for the 1K Pot. A radiation heat shield is soldered to the outside of this section thereby utilizing the enthalpy of the exhaust gas.





1 K Refrigerator Pump Tube and Heat Shields

#### Aluminum 6061

- Thermal Conductivity @ 80 K ~ 100 (Wm-1K-1)
- Ultimate tensile strength > 290 MPa
   (42,000 psi) and increases as T decreases
- Yield strength > 240 MPa (35,000 psi) also increases as T decreases

### Epoxy 3M DP190 Gray

- Etched Aluminum Overlap Shear Strength
   2500 psi (17.2 MPa)
- Epoxy Wetted and Abraded Aluminum

Apiezon Type N

3M DP190 Gray
Adhesive Epoxy
Highlighted in Red







1 K Refrigerator Pump Tube and Heat Shields



"Rails" NMR/Microwave Carrier



#### Trolley Rails

- Spiral wound garolite tube, 1 mm wall
- Actuation via spooling winch in combination with block and tether
- Tether doubles as a wire harness

#### Microwave Waveguide (Nominal 140 GHz system)

- WR6 to Oversized Round Waveguide (ID 4.27 mm)
- OFHC Copper Waveguide transitions to CuZnNi at cold end
- Dispersive foil covered 3D printed reflector

#### **Dual NMR System**

- Currently install
  - Remote Tunable Cold Tank Circuit
  - Traditional λ/2 Circuit
- Other Configurations
  - Dual Targets with Opposing Polarization (w/ **B** Shimming)
  - o NH<sub>3</sub> and ND<sub>3</sub>



Rails NMR/Microwave Carrier





Rails NMR/Microwave Carrier

Microwave On

Microwave Off

Microwave Power Distribution

3D Printed Microwave Foil Covered Reflector







Liquid Crystal Thermochromic Film

Rails NMR/Microwave Carrier





#### **Spooling Winch**

- 3D Printed PLA
- 18 Lead Low Noise Slip Ring Commutator

#### Tether sheaths Trolley wiring

- Two 36 AWG Quad twist
- Two Coax Level Probe
- Two Heater Leads



Rails NMR/Microwave Carrier

# Implication from Trolley and Cartridges

- NMR Coil(s) and System External to Target Material, Insert, and Bath
  - Bath Narrows @ TargetCell(s)
  - NMR Coil(s) Close Proximity to Material
- Microwave Waveguide(s) External to Target Insert

1K Bath Fluoropolymer or Ceramic



1K Bath Cut-ins for NMR Coils Increases Sensitivity

Retractable 1 K Bath "Trolley"

- Top loading bath eliminates the need for superfluid seal or dismantling fridge
- Re-entrant beam line
- Recirculating Torlon ball bearings distribute cantilevered load of bath over large area of the thin walled insert
- Large volume to buffer bath level (~ 500 ml)
- Capacitive level probe
- High/Low level Cernox temperature Sensors
- Open top target containment vessel completes bath
- PTFE Compression Seal



Retractable 1 K Bath "Trolley"

- Top loading bath eliminates the need for superfluid seal or dismantling fridge
- Re-entrant beam line
- Recirculating Torlon ball bearings distribute cantilevered load of bath over large area of the thin walled insert
- Large volume to buffer bath level (~ 500 ml)
- Capacitive level probe
- High/Low level Cernox temperature Sensors
- Open top target containment vessel completes bath
- PTFE Compression Seal



Retractable 1 K Bath "Trolley"

### Cartridge Design

Maximize Target Viability

Rastered Electron Beam Reduces Local Dose

#### Target Length

- Target Length 20 to 60 mm
- Or Two...

#### Fill Factor Improved

 Consistency Between (Fill Target Cartridges Offline not Time Constrained)

#### Annealing

 Offline annealing possible with removable cartridges (Less Beam Down Time)



Target Material NH<sub>3</sub>, ND<sub>3</sub>



Retractable 1 K Bath "Trolley"

- Test material is Tempo doped epoxy
- Cartridge is a porose FEP cell with PTFE end caps
- Target Cartridge is loaded through fridge load lock







EEL Test 2019

#### Pre Cool Stress Test April 2019

- 77K
- System Vacuum Integrity

### First Cool Down May 2019

- NMR System Test
- Stationary 1K Open Bath

### Second Cool down September 2019

- NMR System Test
- Stability and Power Measurements
- Trolley Motion 1 K Bath



EEL Test 2019

| Load Conditions | T_Bath  | Evaporative<br>Cooling Power | Fridge Flow He | LHe<br>Consumption*** |
|-----------------|---------|------------------------------|----------------|-----------------------|
| No Load         | 0.969 K | 120 mW                       | 2.00 slpm      | 0.159 LLHe/hr         |
| 220 mW          | 0.983 K | 392 mW                       | 6.34 slpm      | 0.503 LLHe/hr         |
| 471 mW *        | 1.00 K  | 581 mW                       | 9.4 slpm       | 0.745 LLHe/hr         |
| 1500 mW **      | 1.187 K | 3693 mW                      | 59.8 slpm      | 4.740 LLHe/hr         |



<sup>\*</sup> Heater Film boiling prevented accurate power measurements above this value.

<sup>\*\*</sup> Minimum μ-wave power transmitted through waveguide measure at 295 K

<sup>\*\*\*</sup> Separator Flow was kept high to mitigate oscillations from the He transfer line 60 slpm (4.76 LLHe/hr)

Thank you



Text

Cooldown from Fridge Dormant State to 1 K ~1 hr





#### - Polarized and Stable



#### + Polarized and Stable



### Trolley retracted MAX bath temp 80 K



