Improvements to the Laser Polarization Measurement Inside a Laser Fabry-Perot Cavity

Dave Gaskell on behalf of Amali Premathilake Jefferson Lab

PSTP 2019 September 23-27, 2019

- → Hall A Compton Polarimeter Overview
- \rightarrow Laser system
 - → Polarization before cavity
 - → Polarization inside cavity

Hall A Compton Overview

Components:

- 1. 4-dipole chicane: Deflect electron beam vertically
 - 6 GeV configuration: Hall A → 30 cm
 - 12 GeV configuration: Hall A → 21.5 cm
 - Laser system: Fabry-Pérot cavity pumped by CW laser resulting in few kW of stored laser power
- 2. Photon detector: PbWO4 or GSO operated in integrating mode
 - \rightarrow see talk by Adam Zec
- 3. Electron detector: segmented strip detector

Systematic Uncertainties

Example from HAPPEX-III in Hall A

Compton polarimetry becoming increasingly precise → Laser polarization must be well controlled in order to not become dominant source of uncertainty

ferson Lab	

Jet

Systematic Errors				
Laser Polarization	0.80%			
Signal Analyzing Power:				
Nonlinearity	0.30%			
Energy Uncertainty	0.10%			
Collimator Position	0.05%			
Analyzing Power Total Uncertainty	0.33%			
Gain Shift:				
Background Uncertainty	0.31%			
Pedestal on Gain Shift	0.20%			
Gain Shift Total Uncertainty	0.37%			
Total Uncertainty	0.94%			

M. Friend, et al, NIM A676 (2012) 96-105

Compton Laser System

Laser system:

- 1. 2-10 kW CW green power
- 2. ~100% circular polarization
- \rightarrow Known to high precision

Main components of Hall A Compton laser system:

- 1. Narrow linewidth 1064 nm seed laser
- 2. Fiber amplifier (>5 W)
- 3. PPLN doubling crystal
- 4. High gain Fabry-Pérot cavity
- 5. Polarization manipulation/monitoring optics

Fabry-Pérot Cavity

- Compton polarimeter measurement time a challenge at JLab
 - Example: At 1 GeV and 180 μ A, a 1% (statistics) measurement with 10 W CW laser would take on the order of 1 day!
 - Not much to be gained with pulsed lasers given JLab beam structure (nearly CW)
- A high-finesse (high-gain) Fabry-Pérot cavity locked to narrow linewidth laser is capable of storing several kW of CW laser power
 - First proposed for use at JLab in mid-90's, implemented in Hall A in late 90's (Hall C in 2010, HERA..)
- Fabry-Pérot cavity poses significant challenge in determining laser polarization
 - Degree of circular polarization in cavity can be different than input laser DOCP
 - Vacuum system can introduce additional birefringence

Fabry-Pérot Cavity

Jefferson Lab

Laser Polarization - the Transfer Function

How do know the laser polarization inside a FP cavity inside the beamline vacuum? → In the past, polarization was inferred from measurements of beam transmitted through cavity, after 2nd mirror

State 1: DOCP in exit line 500 100 99. 99 98.5 98 unlocked, M2 out 97.5 locked locked 2 locked (closed) locked (200 Torr) 96.5 locked (1 Torr) locked (post bake) QWP angle Jefferson Lab

Typically a "transfer function" was measured with cavity open to air

Possible complications due to:

→ Change in birefringence due to mechanical stresses (tightening bolts)

→ Change in birefringence when pulling vacuum

Polarization of Light Stored in Fabry-Perot Cavity

Two key issues in determination of laser polarization in cavity:

- Transport of laser from polarization-determining optics (QWP/HWP) through possible birefringent elements into vacuum system where it cannot be directly measured
- 2. Birefringent effects due to cavity itself

Measurements suggest that intrinsic phase retardation is low for very high R mirrors

No measurements in region near $1-R \sim 2$ x 10⁻⁴ \rightarrow Hall A mirrors nominal T=170 ppm

$$δ_{\text{Total}} = 2^* (\# \text{ round trips}) * δ_M$$

= 2*(Finesse/2π) * δ_M

For δ_M 10⁻⁶, impact negligible, but could be significantly larger

w for very high R F. Bielsa et al. Appl. Phys. B (2009) 97: 457 10^{-2} 10^{-3} $\overline{\Psi}$ $\overline{\Psi}$ $\overline{\Psi}$ $\overline{\Psi}$ $\overline{\Psi}$ $\overline{\Psi}$

Total impact on DOCP ~ $(\delta_{Total})^2/2$

Evidence for Cavity Birefringence in Hall A Fabry-Pérot Cavity

Jefferson Lab Amount of light reflected back from cavity increases when it is locked!

Laser Polarization – the "Entrance" Function

Propagation of light into the Fabry-Pérot cavity can be described by matrix, M_E

- \rightarrow Light propagating in opposite direction described by transpose matrix, $(M_E)^T$
- → If input polarization (ϵ_1) linear, polarization at cavity (ϵ_2) circular only if polarization of reflected light (ϵ_4) linear and orthogonal to input*

Jefferson Lab

JINST 5 (2010) P06006

Steering mirrors,

Polarization at Cavity Entrance via Reflected Power

"If input polarization (ϵ_1) linear, polarization at cavity (ϵ_2) circular only if polarization of reflected light (ϵ_4) linear and orthogonal to input"

 \rightarrow In the context of the Hall A Compton, this means that the circular polarization at cavity is maximized when retro-reflected light is minimized

- → Optical reversibility allows configuring system to give 100% DOCP at cavity entrance, even when the system is under vacuum, just by minimizing signal in one detector
- → In addition, response of whole system can be modeled by sampling all possible initial state polarizations

Reflected Power Scans

Using a combination of half and quarter wave plates, we can build an arbitrary polarization state

- → Scanning this polarization phase space and monitoring the retro-reflected power, we can build a model for the entrance function, M_E
- → Free parameters include variations to HWP and QWP thicknesses, arbitrary element with non-zero birefringence

Determination of Cavity Birefringence

Cavity birefringence can be measured by:

1. Prepare known input polarization state

2. Measure polarization after second cavity mirror \rightarrow assumes negligible additional birefringence as light is transmitted through last mirror

Mathematically, system can be described using Jones matrix formalism

 $P_{final} = M_{cav} P_{initial}$

 $\rightarrow M_{cav}$ encodes total effect of birefringence due to cavity system

Parameterized: $M_{cav} = R(\eta) PH(\delta) R(\theta)$ Rotator Phase retarder

Determination of Cavity Birefringence

Actual measurement of transmitted power requires additional component due to geometrical/locking-servo constraints

Can use non-polarizing beamsplitter cube (NPBS) to sample transmitted beam while allowing locking electronics to monitor state of cavity lock

Unfortunately NPBS also has some birefringence so must be characterized

NPBS Characterization

Measured Stokes parameters of light transmitted through NPNS for a variety of initial states

S1 = 1, linear horizontal S1 = -1, linear vertical

S2=1, linear +45 degrees S2=-1, linear -45 degrees

S3=1, circular right S3=-1, circular left

NPBS response fit using matrix similar to that used for cavity birefringence

Cavity Birefringence

 $P_{final} = M_{NPBS}M_{cav}P_{initial}$

Phase space of initial polarization states somewhat limited → need to limit backreflection to avoid damaging laser system

→ Able to sample values close to 100% DOCP while introducing significant linear component

 $M_{cav} = R(\eta) PH(\delta) R(\theta) \longrightarrow \delta = -5.16 \pm 0.06$ degrees

 $\delta_{\text{Total}} = 2^*(\text{Finesse}/2\pi) * \delta_{\text{M}}$

Intrinsic Phase Retardation of Mirrors

 $\delta_{\text{Total}} = 2^* (\text{Finesse}/2\pi) * \delta_{\text{M}}$

Hall A cavity: Finesse ~ 12000 For δ_{Total} =5.16 degrees (0.09 radians), δ_{M} = 2.4 x 10⁻⁵

F. Bielsa et al. Appl. Phys. B (2009) 97: 457

DOCP in Cavity

With cavity birefringence and entrance function, can predict DOCP in cavity and determine optimum settings for left and right circular polarization:

 $P_{cavity} = M_{cav}M_EP_{initial}$

Testing Cavity DOCP Model

Model of polarization in cavity can be tested using asymmetry data from polarimeter

→ Mis-tune QWP/HWP to result in smaller DOCP, compare measured asymmetry

Jeffe

	QWP angle (deg)	HWP angle (deg)	DOCP (predicted)
	49.2	0.2	100%
	49.2	15.2	98.7%
	49.2	31.2	95.8%
	47.7	19.1	98.2%
or	n Lab		

Measurements taken during summer run – data under analysis

Summary

- Fabry-Pérot cavity required for Compton polarimetry measurements at Jefferson Lab
- Laser polarization in cavity a key source of systematic uncertainty that must be controlled
- Previous technique of measuring the exit-line transfer function suffers from birefringence changes in exit window (vacuum, mechanical stresses)
- New technique:
 - Use back-reflected light to determine "entrance function" → this can be done with system under vacuum
 - Measure cavity birefringence directly
- Model of cavity polarization will be tested with asymmetry data taken during the summer

Compton Scattering – Cross Section and Asymmetry

Compton Scattering - Kinematics

Laser beam colliding with electron beam nearly head-on

$$E_{\gamma} \approx E_{\text{laser}} \frac{4a\gamma^2}{1 + a\theta_{\gamma}^2 \gamma^2}$$

$$a = \frac{1}{1 + 4\gamma E_{\text{laser}}/m_e}$$

Maximum backscattered photon energy at $\theta=0$ degrees (180 degree scattering)

For green laser (532 nm):

→
$$E_{\gamma}^{max}$$
 ~ 34.5 MeV at E_{beam} =1 GeV
→ E_{γ}^{max} = 3.1 GeV at E_{beam} =11 GeV

Laser Polarization in Low Gain Fabry-Perot Cavity

Exit Line Laser Polarization vs Power

Cavity polarization optimization scans performed with cavity unlocked → In Hall C - no measureable difference in laser polarization when comparing to locked cavity

