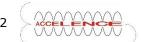
Lifetime Measurements of GaAs Photocathodes at the Upgraded Injector Test Facility at Jefferson Lab*


M. Herbert, J. Enders, M. Poelker, C. Hernandez-Garcia

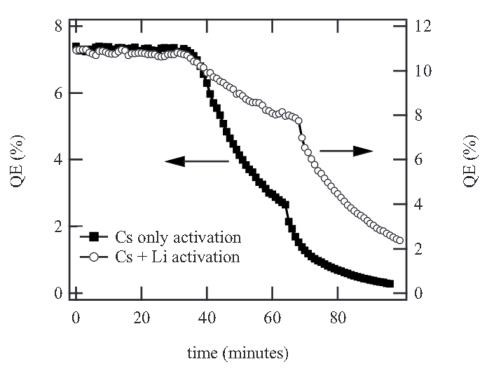
Introduction

- ➤ GaAs-based photocathodes used to produce spin-polarized electron beams
- Posesses negative electron affinity (NEA) when activated with specific surface layer (Cs and oxidant, e.g. O_2 or NF₃) \rightarrow different methods possible
- \triangleright Quantum efficiency η and lifetime τ highly depend on quality /composure of NEA layer
- η characterizes electron emission efficiency
- τ characterizes decay of NEA layer
- \triangleright High η and τ desired for optimal accelarator operation

Lifetime Modeling

$$\frac{1}{\tau} = \sum_{i} \frac{1}{\tau_{i}} = \underbrace{\frac{1}{\tau_{vac}} + \frac{1}{\tau_{loss}}}_{\text{charge lifetime}} + \underbrace{\frac{1}{\tau_{loss}} + \frac{1}{\tau_{ibb}}}_{\text{charge lifetime}} \text{ with:}$$

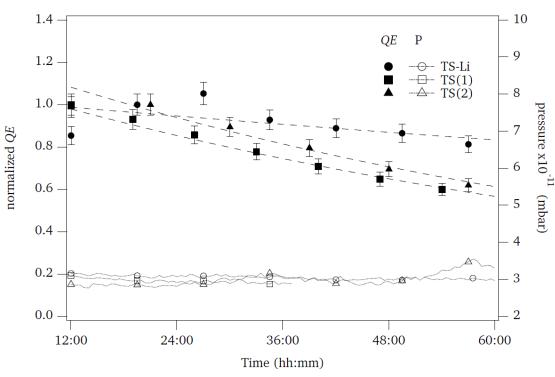
Vacuum lifetime: Vacuum conditions Field emission: Material and Electrode design


Particle losses: Small emittance Ion back-bombardment: H₂ vacuum conditions

$$\eta(t) = \eta_0 \times e^{\left(-\frac{t}{\tau}\right)} = \eta_0 \times e^{\left(-\frac{t}{\tau_d} - \frac{Q(t)}{k_c}\right)} \quad \text{for } I \neq \text{const. with } Q(t) = \int_0^t I(\tilde{t}) d\tilde{t}$$
$$= \eta_0 \times e^{-t \times \left(\frac{1}{\tau_d} + \frac{1}{\tau_c}\right)} \quad \text{for } I = \text{const. with } \frac{1}{\tau_c} = \frac{I}{k_c}$$

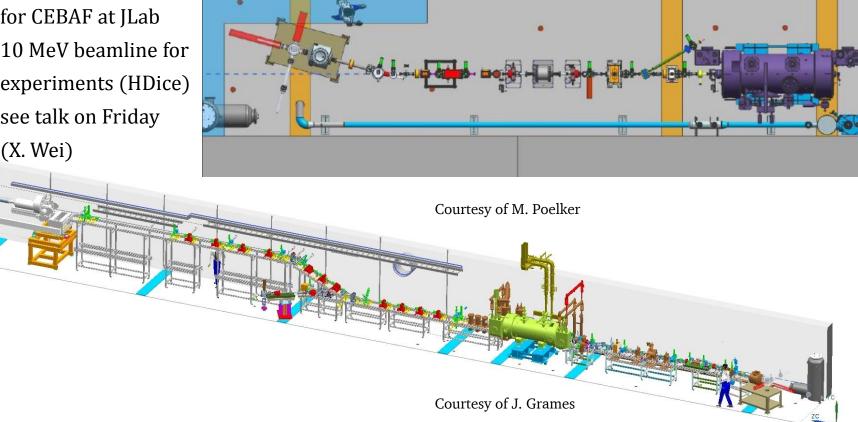
Li-enhanced activation

- ➤ G. A. Mulhollan and J. C. Bierman: study on Cs+Li+NF₃ activation
- Increase of η and τ_d reported@633 nm
- Further study by Y. Sun et al. (2009) on surface layer using synchrotron radiation photoemission


G. A. Mulhollan and J. C. Bierman, *Enhanced chemical immunity for negative electron affinity*, J. Vac. Sci. Technol. A, Vol. 26, No. 5 (2008)

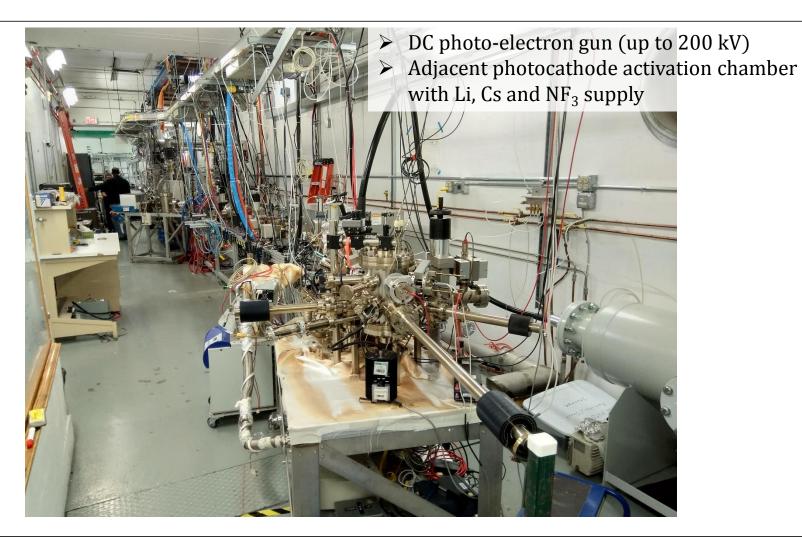
Li-enhanced activation

- Recent study at TU Darmstadt on Cs+Li+O₂ activation by
 N. Kurichiyanil et al.
- Reduced η observed:
 (20±1) % vs (26±1) %
 @405 nm
- > Increased τ_d reported: (298±35) h vs (88±1) h
- \triangleright No studies on τ_c yet!



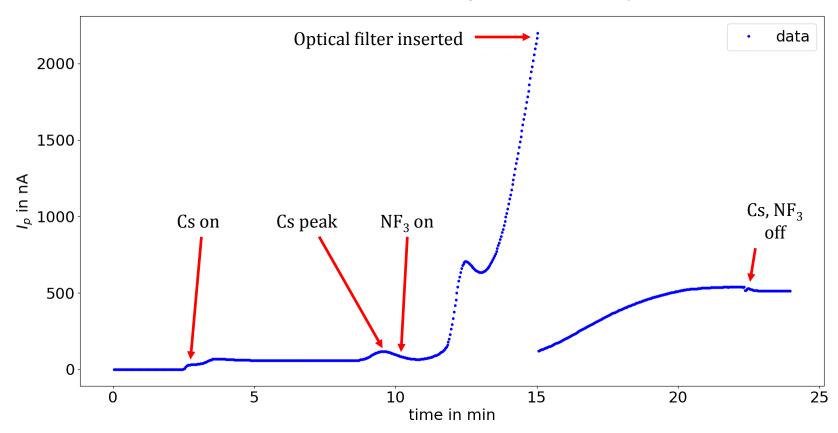
N. Kurichiyanil *et al.*, *A test system for optimizing quantum efficiency and dark lifetime of GaAs photocathodes*, Journal of Instrumentation 14 P08025 (2019)

UITF at JLab

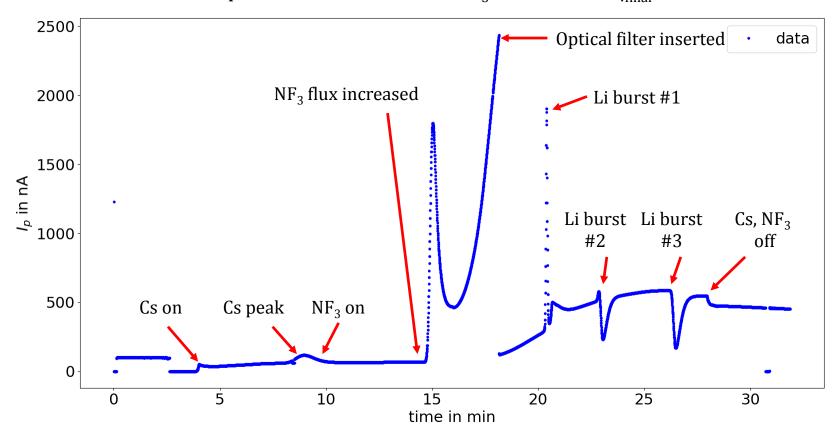


- Research and development facility for CEBAF at JLab
- > 10 MeV beamline for experiments (HDice)
- \rightarrow see talk on Friday

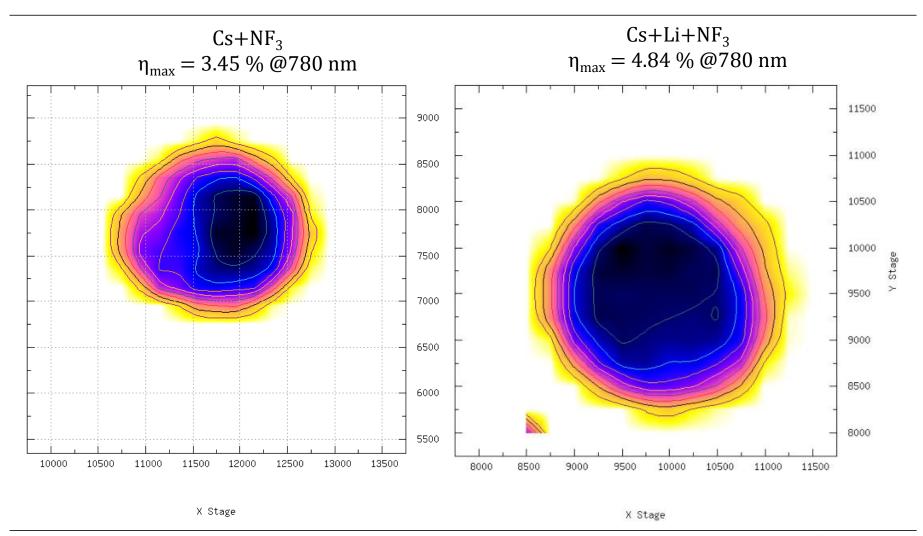
UITF Source Section



Photocathode activation

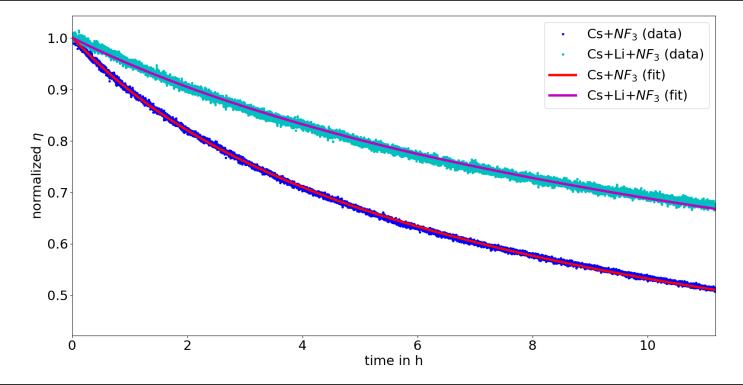

Bulk GaAs, Co-Deposition scheme, Cs+NF $_3$, 5 mm mask, $\eta_{final} = 3.14 \%$ @780 nm

Photocathode activation



Bulk GaAs, Co-Deposition scheme, Cs+Li+NF₃, 5 mm mask, $\eta_{final} = 2.75 \%$ @780 nm

Quantum Efficiency Scans



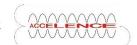
Lifetime Measurements

	U _{Gun} in kV	λ in nm	η_0 in %	τ_d in h	k _c in C
Cs+NF ₃	150	780	4.59 ± 0.05	79 ± 6	3.32 ± 0.03
Cs+Li+NF ₃	150	780	5.18 ± 0.04	905 ± 9	5.81 ± 0.01

Decay Modeling

- "Standard" exponential decay does not match data
- Other options (J. Navas *et al., Int. J. Energy Res.* 2012; **36**:193-203):
 - o Bi-exponential function:

$$I(t) = I_{\rm r} + I_0 \left[\alpha \exp\left(-\frac{t}{\tau_1}\right) + (1 - \alpha) \exp\left(-\frac{t}{\tau_2}\right) \right]$$


o Bequerel function:

$$I(t) = I_{\Gamma} + I_{0} \frac{1}{\left(1 + \alpha \frac{t}{\tau_{0}}\right)^{\frac{1}{\alpha}}} \quad \text{with } 0 \le \alpha \le 1$$

→ modified Bequerel function:

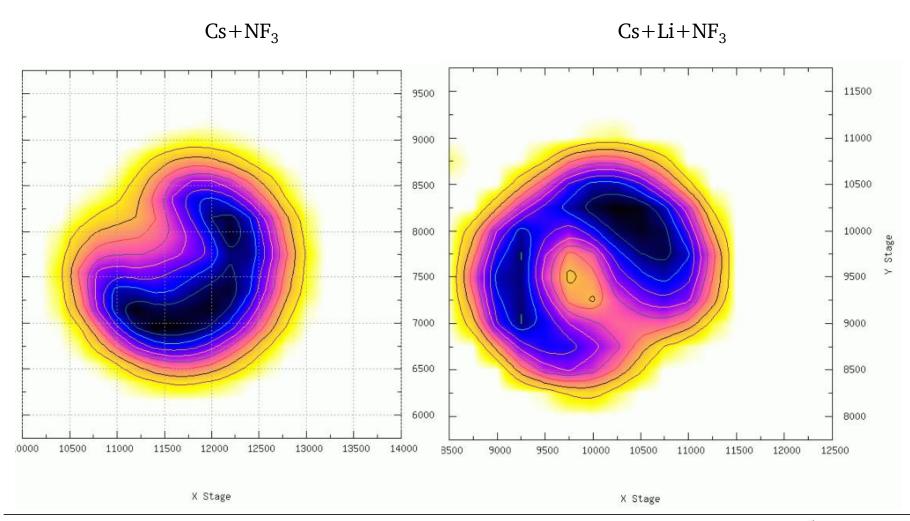
$$\eta(t) = \eta_0 / (1 + \frac{t}{\tau_d} + \frac{Q(t)}{k_c})$$

→ very good match to data...but why?

Conclusion

- First operational study of GaAs cathode with Li-enhanced NEA layer
- First lifetime measurement at UITF
 - → Li-enhanced activation yielded highest η achieved at UITF so far!
- \triangleright Increase in η and τ observed:
 - ο η increased by factor of ~ 1.1
 - o τ_d increased by factor of ~11.5 (previously reported: 3.4)
 - o k_c increased by factor of ~ 1.75
- Exponential decay model does not match
 - → further investigation required
- ➤ Further studies planned at JLab (Cs+Li+NF₃) and TU Darmstadt (Cs+Li+O₂)

Thank you for your attention!


I would like to thank the entire Jlab CIS group for providing me a research opportunity and for their continued support and advice. Special thanks go to:

Matt Poelker, Joe Grames, Bubba Bullard, Marcy Stutzman, John Hansknecht, Carlos Hernandez-Garcia, Phil Adderley and Gabriel Palacios-Serrano.

Quantum Efficiency Scans

