Design of a Compact Photon Source for Compton Scattering from Solid Polarized Targets

Gabriel Niculescu James Madison University

2019 Workshop on Polarized Sources, Targets, and Polarimetry Knoxville, Tenn.

September 23, 2019

Introduction

Time permitting, I shall talk about...

- electromagnetic probes in nuclear/particle physics
- Brief history of photon sources
- CPS concept.
- CPS design & engineering.
- Outlook

Disclaimer:

This is just GN's \$0.02 worth...

- Many people contributed (directly or indirectly) to this talk (collab. from CUA, Glasgow, GWU, St. Mary's, UVa, JMU, JLab).
- ...and they all have done their level best! thanks!
- Therefore, all inaccuracies, miss-statements, controversial, or just plain wrong statements are mine alone!
- That said, onward to the:Why should one want/need photon beams? question...

Electromagnetic probes...

excellent for probing nuclear substructure:

- High energy, intensity, "clean"
- QED is well understood

However...

- target is not static!
- probe affects the dynamics (recoil, pair prod., relativistic eff.)
- e beam: low cross-section, radiative corrections, ...
- photon beam: possible alternative/complementary to e^- beams. (Avoids the problem or at least it presents a diff. perspective!)

d system d,

GPD formalism holds to promise of...

"nuclear femtography":

- 3D picture of the nucleon substructure.
- use exclusive reactions at high mom. transfer -t, high s too.
- e^- and γ can/should be used over a wide range of s and -t to disentangle H, \tilde{H} , E, \tilde{E} (Compton FFs?).
- simultaneous access to all of these functions requires target polarization (ideally both long. and trans. pol. targets!)
- for the particular case of RCS: $\vec{\gamma} + \vec{p} \rightarrow \gamma + p$

$$\frac{d\sigma}{dt} = \frac{d\sigma}{dt}_{KN} \left(\frac{1}{2} \left[R_V^2 + \frac{-t}{4m^2} R_T^2 + R_A^2 \right] - \frac{us}{s^2 + u^2} \left[R_V^2 + \frac{-t}{4m^2} R_T^2 - R_A^2 \right] \right)$$

. .

$$\begin{split} R_{V}(t) &= \sum_{a} e_{a}^{2} \int_{-1}^{1} \frac{dx}{x} H^{a}(x,0,t) \\ R_{A}(t) &= \sum_{a} e_{a}^{2} \int_{-1}^{1} \frac{dx}{x} sign(x) \hat{H}^{a}(x,0,t) \end{aligned}$$

Looking at polarization obs.

one gets access to ratios of Rs and thus to (integrals of) GPDs.

Photon Sources: a lightning-quick history (I)

alas...

- "designer" exclusive reactions come at a price:
- competing processes/backgrounds, (very)low cross-sections.
- thus the need of developing high energy, high intensity photon beams.
- brief review of possible options follows

photon source options

- ullet \sim few MeV radioactive isotopes
- > few TeV cosmic rays
- In-between use bremsstrahlung radiation to "build" your own.
- For RCS work: high s and -t, so ~ 10 GeV (or more) would be ideal.

Photon sources (II)

Radiator, Sweeper, (Tagger), Dump.

- early examples: DESY (1971), SLAC (1971), CEA ('72-'73)
- $s > 2 GeV^2$, low t. Flux $\sim 2 \times 10^8 \gamma/s$
- Cornell (1975), flux $\sim 1.5 \times 10^{10} \gamma/s$.
- Bauer-Spital-Yennie review, RMP 50 (1978)
- If tagging, usable flux much lower ($\sim 10^{7-8} \gamma/s$).

Outline & Disclaimer Photon source history

Photon sources (III)

Mixed e^-/γ beams.

- JLab (2002, 2008). Flux $\sim 2 \times 10^{13} \gamma/s!$
- competing reactions: π^0 photoproduction, e-p elastic.
- difficult analysis (low cross-section, solid angle).
- low efficiency & analyzing power of the proton polarimetry
- if polarized target luminosity much lower.
- ...and for awhile this was the "state-of-the-art" in the field!

Photon sources (IV)

Material #4 Polarization Lifetime

SANE exp. (J. Maxwell Ph.D. Thesis)

- mixed e/γ beam + pol. target = lots of problems
- frequent annealing needed. change of material as well.

Compact Photon Source Concept

CPS.

- Incident beam: small trans, size
- Outgoing γ beam: m/E angular size
- Source could be hermetic!!!

- What to do w/ the electron beam?
- Traditional approaches NO!
- no hermeticity, large, \$\$\$.
- Idea: Use the magnet as a dump, ergo, problem is solved!
- Can this be done?

CPS Central piece

...

Deflect, degrade, (begin to) dispose of residual e^- beam

For the current $(09/2019 \text{ design}) \dots$

- Radius R for 11 GeV $e^- \sim 10$ m
- ullet For 0.3 cm channel power deposition area 17 \pm 12 cm
- ullet Total field integral: $\sim \! 1000$ kG-cm. 50 cm iron dominated magnet.

Compact Photon Source

CPS Q&A:

CPS Questions

- How will the γ beam look like?
- Will the central piece melt? How hot will it get?
- Is the shielding adequate? How about activation?
- How heavy, co\$tly will this thing be?
- Is fabricating such device possible?

CPS development tools

- OPERA (magnet)
- Geant 4 (γ beam profile, prompt radiation, power deposition)
- Fluka (prompt and activation calculations)
- ROOT/C++, Python.

Beam Profile

Photon Energy Density [MeV/cm²/electron] @3m

Central Piece Power Dissipation

- Study CP power deposition.
- Position, extent, amount.

- Focus on the z region w/ the most energy deposited.
- Heat transport simulation.
- ... w/ various cooling options.
- Hot but VERY FAR from melting!

CPS Shielding Configurations:

01 - Square shielding. Offset.

03 - Cut Spherical shielding.

02 - Spherical shielding.

04 - Cut "egg-shape".

NOTE: Figures not to scale! Powder W volume is reduced:

 $4.8 \, m^3, \, 2.2 \, m^3, \, \dots \, 1.8 \, m^3.$

Rad. level [mrem/h] after 1 day cooling. (1 h, 7d & 30 d. avail.)

Prompt radiation level. n & γ combined

Identify materials, techniques, expertise

Can it be built?

- Expertise in building/operating magnetic systems in high rad. env. exists (ORNL, J-PARC)
- Identify rad. hard materials for magnet building
- Potential vendors* for W- powder, W Cu alloy, etc.
- Study/identify technique for CP machining.

High energy photon sources, past/present/future

LOG10(FOM)

Outlook

Hopefully I convinced you that CPS is...

- ullet a novel technique for producing untagged γ beams (JLab).
- well matched w/ the UVa polarized target & Hall C/A setups.
- × 30 FOM improvement over current and projected setups!
- relatively low cost; concept adaptable to other areas.

Thank you!