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EXPECTED POLARIZATION ROTATION ANGLE

Schwinger scattering length = bso = (2pµn/hc) Ze (1 - f220) cot(qB)

Rotation angle per bounce = d = 2 | bso / bc | = 3.27 x 10-4 rad

Total rotation for 136 bounces = 0.0473 rad

µn = neutron magnetic dipole moment

f220 = form factor for the charge distribution of atomic electrons

qB = Bragg angle

bc = coherent scattering length



The best laid plans of mice and men:   SLOT IS NON-UNIFORM
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FRACTIONAL CHANGE IN THE REFLECTED BEAM COUNT RATE*
vs. DISTANCE FROM ROTATOR COIL TO SLOTTED CRYSTAL

* Normalized to main beam rate and corrected for background



AMPLITUDE EVALUATED at Dr = 55 mm vs. MAGNETIC FIELD



AMPLITUDE of OSCILLATION* vs. MAGNETIC FIELD

* Normalized to that expected for a perfect crystal



PHASE of OSCILLATION vs MAGNETIC FIELD



AMPLITUDE of OSCILLATION at 17.672 G*

* Field calibrated by NMR with polarized 3He, uncertainty 0.01%, variation over slot 0.03%



Oscillation amplitude = 0.0088

Assuming polarization is at an angle q,
q = arcsin (0.0088) = 0.50 deg

Spin transport efficiency = cos q = 0.99996

If preserved in reflected beam, 
this imperfect spin transport
would yield an oscillation with 24% of 
expected amplitude for an ideal crystal

SPIN TRANSPORT OSCILLATION SYSTEMATIC
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ELIMINATED THE SPIN TRANSPORT ISSUE WITH POLARIZED 3He SPIN FILTERS

*  but with 2 (initial) – 6 (final) times lower count rate
(even with 80% initial 3He polarization and 300 - 400 h relaxation times)



AMPLITUDE OF OSCILLATION AT -0.25% BELOW 17.672 G

Red – supermirrors
solid – permanent magnet           
open – longitudinal coil

Green – polarized 3He spin filters



SUMMARY of RESULTS

Supermirrors: S = 1.32 +/- 0.05 (stat) +/- 0.18 (sys)

Spin filters: S = 1.06 +/- 0.12 (stat)

Calculated:  S = 0.75 (our crystal)

Finkelstein: S = 0.75 * 1.178 = 0.883 +/- 0.016   
(K.D. Finkelstein, Ph.D thesis, MIT, 1987. “Neutron spin-Pendellosung resonance”)

Method of multiple spin rotations demonstrated
- but result for observed rotation larger than expected
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