Hadron Polarimetry at an Electron-Ion Collider

K. Oleg Eyser

RHIC Spin Group Brookhaven National Laboratory

18th International Workshop on Polarized Sources, Targets and Polarimetry

September 23-27, 2019 Knoxville, TN

Requirements for an Electron-Ion Collider

- Physics observables
 - High beam polarizations: electrons & protons
- High EIC Luminosity \rightarrow small systematics $\approx 1\%$
- Flexible bunch polarization orientation
- Polarimeter ⇔ polarization in collision
 - Bunch polarization profile in x, y, z
 - Polarization lifetime
 - Polarization per bunch
- First collider with polarized deuterium and 3He beams
- Luminosity measurement depends on beam polarization
 - Need theory input

Polarized Protons at RHIC

Polarized Protons at RHIC

Acceleration of Polarized Hadron Beams

Magnetic moment precession in magnetic fields:

- Thomas-BMT equation
- Lorentz force

$$\frac{d\vec{P}}{dt} = -\left(\frac{e}{\gamma m}\right) \left[G\gamma \vec{B}_{\perp} + (1+G)\vec{B}_{\parallel}\right] \times \vec{P}$$

$$\frac{d\vec{v}}{dt} = -\left(\frac{e}{\gamma m}\right)\vec{B} \times \vec{v}$$

G = 1.7928 $\gamma = E/m$ $\nu_{spin} \equiv G\gamma$

- Imperfection resonances
 - $v_{spin} = n$
 - integer *n*

- Intrinsic resonances
 - $v_{spin} = kP + v_y$
 - integer *k*
 - superdiodicity P
 - vertical betatron tune ν_{ν}

Proton Polarimetry at RHIC

$$\varepsilon = A_N \cdot P = \frac{N_L - N_R}{N_L + N_R}$$

(*) perpendicular to polarization vector

Elastic Proton Scattering

Polarization Decay and Bunch Profile

Experiments

$$P = \frac{\int P(x, y, t) \cdot I_B(x, y, t) \cdot I_Y(x, y, t) dx dy dt}{\int I_B(x, y, t) \cdot I_Y(x, y, t) dx dy dt}$$

HJET Polarimeter

$$P = \frac{\int P(x, y, t) \cdot I(x, y, t) dx dy dt}{\int I(x, y, t) dx dy dt}$$

Carbon Polarimeter

Polarization Decay and Bunch Profile

Experiments

$$P = \frac{\int P(x, y, t) \cdot I_B(x, y, t) \cdot I_Y(x, y, t) dx dy dt}{\int I_B(x, y, t) \cdot I_Y(x, y, t) dx dy dt}$$

HJET Polarimeter

$$P = \frac{\int P(x, y, t) \cdot I(x, y, t) dx dy dt}{\int I(x, y, t) dx dy dt}$$

Carbon Polarimeter

Longitudinal Bunch Profile

Asymmetries in JHET

Bunch polarization in HJET

Longitudinal bunch profile: Time of flight difference from the elastic recoil

Longitudinal Bunch Profile

Significant and time dependent longitudinal bunch polarization profiles have been observed in 2017 data.

Elastic Recoil and Background

- p+p at $\sqrt{s} = 21.6 \text{ GeV}$
- PYTHIA 6.4.28, Tune 320
 - QCD $2 \rightarrow 2$
 - Elastic
 - Diffractive
- Prompt background
 - pions / photons up to a few GeV
 - Kinematic correlation lost

- Planned test with veto detector for charged pions
- Significant background also at low energies
- Problematic for much reduced bunch spacing

EIC Luminosity and Bunch Spacing

120 bunches \rightarrow 1320 bunches 106 ns \rightarrow 8.9 ns

- Carbon polarimeters (high rate)
- Reduced bunch spacing requires rejection and understanding of background
- Potential background asymmetry or dilution
- Loss of increased asymmetry at lower energies, $A_N(-t)$

Polarimetry with Forward Neutrons

- Early RHIC measurement $p^{\uparrow} + p \rightarrow n + X$
 - Forward neutrons in Zero Degree Calorimeter (ZDC)
- Significant asymmetry, $A_N \approx 8\%$
 - Interference of π^+ (spin-flip) and a_1^+ (spin-nonflip) exchanges (Kopeliovich et al.)
- Now a tool for local polarimetry in experiments
 - Tune spin rotators for azimuthal asymmetry → 0

- Surprise in p + Al and p + Au collisions
- Very large asymmetry (with opposite sign)
- Select low multiplicity with beam-beam counters
- Ultra-peripheral collision extension to π/a_1 model

- Surprise in p + Al and p + Au collisions
- Very large asymmetry (with opposite sign)
- Select low multiplicity with beam-beam counters
- Ultra-peripheral collision extension to π/a_1 model
- Photon flux from STARlight
 Klein et al., Comput. Phys. Comm. 212 (2017) 258
- $\gamma + p^{\uparrow} \rightarrow n + \pi^{+}$ from MAID Drechsel et al., Eur. Phys. J. A 34 (2007) 69

G. Mitsuka, PRC 95 (2017) 044908

FIG. 2. Target asymmetry $T(\theta_{\pi})$ of the $\gamma^* p^{\uparrow} \to \pi^+ n$ interaction as function of W. In the detector reference frame, the curves correspond to the rapidity of produced neutrons $\eta = 6.8$ and 8.0.

- Surprise in p + Al and p + Au collisions
- Very large asymmetry (with opposite sign)
- Select low multiplicity with beam-beam counters
- Ultra-peripheral collision extension to π/a_1 model
- Photon flux from STARlight
 Klein et al., Comput. Phys. Comm. 212 (2017) 258
- $\gamma + p^{\uparrow} \rightarrow n + \pi^{+}$ from MAID Drechsel et al., Eur. Phys. J. A 34 (2007) 69
- Excellent agreement with data

G. Mitsuka, PRC 95 (2017) 044908

- Surprise in p + Al and p + Au collisions
- Very large asymmetry (with opposite sign)
- Select low multiplicity with beam-beam counters
- Ultra-peripheral collision extension to π/a_1 model
- Photon flux from STARlight
 Klein et al., Comput. Phys. Comm. 212 (2017) 258
- $\gamma + p^{\uparrow} \rightarrow n + \pi^{+}$ from MAID Drechsel et al., Eur. Phys. J. A 34 (2007) 69
- Potential candidate for fast polarimetry with fixed target (Au)
- Neutron mulitplicity for azimuthal asymmetry
- Target effect on beam

G. Mitsuka, PRC 95 (2017) 044908

Private communication (G. Mitsuka → W. Schmidke) for fixed target kinematics

Outlook

- Proton polarimetry at RHIC is well established
- Combination of absolute normalization with fast measurements
 - Time dependent polarization decay
 - Transverse and longitudinal bunch profiles
- High luminosity (short bunch spacing) is challenging
 - Bunch by bunch polarization measurement
 - Improvements in detector performance and read-out needed
- Potential new concept for fast polarimeters (high energy neutrons)
- Also required
 - Local polarimetry at IP
 - Light ion beam polarimetry
- Be prepared for surprises!

https://groups.google.com/a/eicug.org/forum/#!forum/eicug-polarimetry