2019 Workshop on Polarized Sources, Targets, and Polarimetry

Contribution ID: 47 Type: not specified

NOPTREX: Polarized ³He Neutron Spin Filter and Polarized Xenon Pseudomagnetic Precession

Thursday, 26 September 2019 10:00 (20 minutes)

The Neutron OPtics Time Reversal Experiment (NOPTREX) collaboration is working towards a sensitive search for time reversal violation in polarized neutron transmission through polarized heavy nuclei. The experiment requires an intense, stable polarized neutron beam at the resonance energies of interest near 1 eV. We have recently constructed a 3 He neutron spin filter at Indiana University which makes use of the very large spin dependent neutron absorption cross-section of 3 He to polarize neutrons. We polarize 3 He gas using spin-exchange optical pumping (SEOP). We have combined our laser optics and oven with a μ -metal shielded solenoid and a 3 He gas cell from ORNL to realize our polarizer. We also discuss a planned experiment to measure neutron pseudomagnetic precession in polarized xenon gas. 131 Xe is one of the nuclei on interest for the NOPTREX test, and this measurement will help us determine a significant systematic error related to spin dependent components in polarized neutron-nucleus transmission and also measure the spin-dependent scattering amplitudes of both 129 Xe and 131 Xe for the first time. This experiment will use an Neutron Spin Echo spectrometer to measure pseudomagnetic precession and an existing SEOP system to polarize both 129 Xe and 131 Xe.

Summary

Primary author: LU, Hao (Indiana University Bloomington)

Presenter: LU, Hao (Indiana University Bloomington)

Session Classification: Polarized Neutrons

Track Classification: Polarized Neutrons