Polarized Electron and Hadron Beams at JLEIC

V.S. Morozov, Ya.S. Derbenev, F. Lin, Y. Zhang, *JLab*D. Barber, *DESY*A.M. Kondratenko, M.A. Kondratenko, *Novosibirsk, Russia*Yu.N. Filatov, *MIPT, Russia*

PSTP2019, Knoxville, TN September 26, 2019

JLEIC Layout

- Electron complex
 - -CEBAF
 - Electron collider ring: 3-12 GeV/c
- Ion complex
 - Ion source
 - SRF linac: 150 MeV for protons
 - Low Energy Booster: 8.9 GeV/c
 - High Energy Booster: 13 GeV/c
 - Ion collider ring: 200 GeV/c
- Up to two detectors at minimum background locations
- Upgradable to 140 GeV CM by doubling ion energy

arXiv:1209.0757 arXiv:1504.07961

pCDR August 2019 PSTP2019

Electron Polarization Strategies

- Highly vertically polarized electron beam from CEBAF
 - -High equilibrium polarization maintained by continuous injection
 - -Two oppositely polarized bunch trains
- Polarization vertical in the arc to avoid spin diffusion and longitudinal at collision points
 - -Universal spin rotator with fixed orbit from 3 to 12 GeV
- Energy independent spin tune
- Spin matching considered
- Compton polarimeter

Universal Spin Rotator

- Vertical polarization ↔ longitudinal
- Sequence of solenoid and dipole sections

- Geometry independent of energy
- Dispersion-free individually-decoupled solenoids
- Two polarization states with equal lifetimes
- House vertical doglegs for stacking collider arcs

Е	Solenoid 1		Dipole set 1	Solenoid 2		Dipole set 2	
	Spin Rotation	BDL	Spin Rotation	Spin Rotation	BDL	Spin Rotation	
GeV	rad	T∙m	rad	rad	T∙m	Rad	
3	π/2	15.7	π/3	0	0	π/6	
4.5	π/4	11.8	π/2	π/2	23.6	π/4 π/3	
6	0.62	12.3	2π/3	1.91	38.2		
9	π/6	15.7	Π	2π/3	62.8	π/2	
12	0.62	24.6	4π/3	1.91	76.4	2π/3	

Spin Tracking

- Spin tune scan using a spin tuning solenoid in SLICK/SLICKTRACK
- Demonstrates suppression of synchrotron sideband spin resonances
- Verified by Zgoubi's Monte-Carlo spin tracking

September 26, 2019

27.65

Polarization Lifetime and Continuous Injection

- Estimated polarization lifetime Lifetime (hours) 116 9 1.7 0.5 0.1
- Constant polarization maintained by continuous injection from CEBAF
- Equilibrium polarization $P_{equ} = P_0 \left(1 + \frac{T_{rev}I_{ring}}{\tau_{DK}I_{inj}}\right)^{-1}$
- Tens-of-nA level average injected current sufficient to maintain high equilibrium polarization
- Beam lifetime must match the beam injection rate and $\tau_{beam} \ll \tau_{pol}$

Low Q^2 Tagger in JLEIC

e⁻ beam to

spin rotator

- Dipole chicane for high-resolution detection of ٠ low-Q² electrons
- Compton polarimetry has been integrated to the interaction region design
 - -same polarization at laser as at IP due to zero net bend
 - -non-invasive monitoring of electron polarization

Generation of Polarized Positrons in CEBAF: PEPPo

J. Guo, EICUGM'19, Paris, France JPos'17 Proceedings

• Polarized Electrons for Polarized Positrons (PEPPo) Concept

$$\vec{e} \rightarrow \gamma \rightarrow \vec{e}^+ (\vec{+e})$$

E.G. Bessonov, A.A. Mikhailichenko, EPAC (1996) A.P. Potylitsin, NIM A398 (1997) 395

E.A. Kuraev, Y.M. Bystritskiy, M. Shatnev, E.Tomasi-Gustafsson, PRC 81 (2010) 055208

• PEPPo Experiment

JLEIC Positron Production Scheme

- Assuming ~90% polarization from the e⁻ source, 60-75% e⁻ to e⁺ polarization transfer, and 80% polarization retention by top-off, we get e⁺ polarization of 43-54%
- Challenging accumulator section can be eliminated by developing a 17 MHZ polarized
 - e^{-} gun with 2 nC bunches (34 mA)

High Ion Polarization

- Figure-8 concept: Spin precession in one arc is exactly cancelled in the other
- Spin stabilization by small fields: ~3 Tm vs. < 400 Tm for deuterons at 100 GeV

-Criterion: induced spin rotation >> spin rotation due to orbit errors

- 3D spin rotator: combination of small rotations about different axes provides any polarization orientation at any point in the collider ring
- No effect on the orbit
- Polarized deuterons
- Frequent adiabatic spin flips

• Total transparent spin resonance strength

 $\vec{\omega}_0 = \vec{\omega}_{coherent} + \vec{\omega}_{emittance}$,

$$|\vec{\omega}_{emittance}| \ll |\vec{\omega}_{coherent}|$$

September 26, 2019

is composed of

- -coherent part $\omega_{coherent}$ due to closed orbit excursion
- -incoherent part $\omega_{emittance}$ due to beam emittances

• Spin stability criterion

-induced spin rotation must dominate over net rotation due to imperfections

 $\nu \gg |\vec{\omega}|$

- -for proton beam $v_p = 10^{-2}$
- -for deuteron beam $v_d = 10^{-4}$

Start-to-End Proton Acceleration in Ion Collider Ring

• Three protons with $\varepsilon_{x,y}^N = 1 \ \mu m$ and $\Delta p/p = 0, \pm 1 \cdot 10^{-3}$ accelerated at ~3 T/min in lattice with 100 μ m rms closed orbit excursion, $v_{sp} = 0.01$

• Coherent resonance strength component

3D Spin Rotator in Ion Collider Ring

- Provides control of the radial, vertical, and longitudinal spin components
- Module for control of the radial component (fixed radial orbit bump)

 $L_{tot} = 7 \text{ m}, \quad \Delta x = 15 \text{ mm}, \quad B_{dip}^{max} = 3 \text{ T}, \quad B_{sol}^{max} = 3.6 \text{ T}$

 Module for control of the vertical component (fixed vertical orbit bump)

- Module for control of the longitudinal component $_{2\varphi_{\mathbf{z}3}}$

$$L_x = L_y = 0.6 \text{ m}, \quad L_{zi} = 2 \text{ m}, \quad L_{zi0} = 1 \text{ m}, \quad \alpha_{orb} = 0.31$$

13

rson Lab

Spin Manipulation

- Spin axis change rate slow compared to spin precession rate
 - $-\tau_{flip} >> 1$ ms for protons and 0.1 s for deuterons
- Constant spin tune

Spin Rotator Calibration

• Radial polarization at a polarimeter in terms of spin rotator solenoid field integrals

$$(P_{Pm})_x = P_0 \frac{BL_x + \omega_x/C_x}{\sqrt{(BL_x + \omega_x/C_x)^2 + (BL_zC_z/C_x + \omega_z/C_x)^2}}$$

- Assume typical parameters of a 100 GeV/c proton beam
- Assume that polarization is measured with a random error of 0.02 rms
- Fit randomly generated data to $(P_{Pm})_x$ formula and extract input parameters

Parameter	Input	Fit			
P ₀	0.8	0.803 ± 0.003 (0.35%)			
ω_x/\mathcal{C}_x (Tm)	0.2183	$0.2185 \pm 0.0007 \ (0.31\%)$			
C_z/C_x	0.582	0.590 ± 0.007 (1.24%)			
ω_z/C_x (Tm)	0.131	0.132 ± 0.002 (1.31%)			

Transparent Spin Resonance Strength up to 200 GeV

- Assuming RMS closed orbit distortion of ~200 μm
- Above ~100 GeV/c, the 3D spin rotator strength may not be sufficient to control polarization ⇒ consider a 3D spin rotator based on transverse fields

Proton Spin Rotator Utilizing Transverse Fields

Concept of Transparent Spin Experiment

- A number of novel polarization preservation and control techniques have been developed for JLEIC
 - -Transparent spin mode
 - Figure-8 ring
 - Racetrack with two identical Siberian snakes separated by 180° bend

- -3D spin rotator: small rations about three orthogonal axes = rotation about any direction
- -Polarized deuteron beam at higher than ever before energies
- -New spin dynamics theory and analytic and simulation tools
- Spin transparency mode is of interest to BNL for the eRHIC electron collider ring
- Plan experimental verification of theory and simulations

RHIC in Transparent Spin Mode

- RHIC already has all of the necessary technical capabilities
- Make snake axes parallel at 0°
- 3D spin rotator
 - Small angle between the snake axesvertical module
 - -Mismatch of the snake strengths from π = longitudinal & radial modules
- Existing polarimeter with fast measurement time, primarily interested in relative measurement

Summary

- Electron polarization scheme
 - -Full-energy injection of polarized beam from CEBAF
 - -High equilibrium polarization maintained by top-off injection
 - -Universal fixed-geometry spin rotators
 - Longitudinal polarization at the IPs
 - Vertical polarization in the arcs to minimize the spin diffusion
 - -Figure-8
 - Equal lifetimes of the two polarization states
 - Energy-independent spin tune
 - -Spin tracking in progress
 - -Compton polarimetry
- Ion polarization scheme
 - -Figure-8
 - Energy independent spin tune
 - Ease of spin preservation, control and manipulation by weak magnetic fields
 - -3D spin rotator designed
 - -Verified by spin tracking
 - -Extended to 200 GeV
 - -Test experiment in preparation

Backup

12 GeV CEBAF as Injector

- Extensive fixed-target science program
 - Fixed-target program compatible with concurrent JLEIC operations
- JLEIC injector
 - -Fast fill of collider ring
 - -Full energy
 - -~85% polarization
 - -Enables top-off
- New operation mode but no hardware modifications

Up to 12 GeV to JLEIC

Electron Collider Ring Layout

• Cost reduction by reusing PEP-II magnets, RF and vacuum pipe in the electron ring

Electron Beam

- Electron beam
 - 3 A at up to 7 GeV
 - Normalized emittance 85 µm @ 5 GeV
 - Synchrotron power density < 10 kW/m</p>
 - Total power up to 10 MW

Parameter	Units					
Energy	GeV	3	5	7	10	12
Beam current	A	3	3	3	0.8	0.39
Total SR power	MVV	0.30	2.28	8.76	9.73	9.84
Energy loss per turn	MeV	0.10	0.76	2.92	12.17	25.23
Energy spread	10-4	2.5	4.1	5.8	8.2	9.9
Transverse damping time	ms	474	102	37	13	7
Longitudinal damping time	ms	237	51	19	6	4
Normalized horizontal emittance	um	18	85	234	683	1180
Normalized vertical emittance	um	1.3	6.0	16.6	48.3	83.5
Bunch length	cm	1	1	1	1	1.32

Electron Collider Ring Optics: Complete Ring

• Global chromaticity compensation scheme

Beam size $\sigma = \sqrt{\beta \varepsilon + (D\Delta p/p)^2}$ $\varepsilon p/mc^2$ is a constant

D (m), D (m)

Electron Injection

- Electron injection from CEBAF
 - Existing CEBAF electron gun
 - Two polarization state injection
 - $f_{ring} / f_{CEBAF} = 476.3 \text{ MHz} / 1497 \text{ MHz} = 7 / 22$
- Test of CEBAF in JLEIC injector mode completed

476.3 MHz e-ring (NCRF PEP-II)

Mid-cycle 1, inject the 1st of every 7 buckets in the ring

Radiative Polarization Effects

• Sokolov-Ternov polarization change rate

$$\tau_{ST}^{-1} = \frac{5\sqrt{3}}{8} \frac{r_e \gamma^5 h/2\pi}{m_e} \frac{1}{C} \oint ds \left(\frac{1 - \frac{2}{9} (\hat{n} \cdot \hat{s})^2}{|\rho(s)|^3} \right)_s$$

 \hat{n} is the invariant spin field, a 1-turn periodic unit 3-vector field over the phase space satisfying the T-BMT equation along particle trajectories, \hat{s} is a unit vector along the particle velocity, and $2\pi\hbar$ is Planck's constant.

Depolarization rate due to spin diffusion

$$\tau_{SD}^{-1} = \frac{5\sqrt{3}}{8} \frac{r_e \gamma^5 h/2\pi}{m_e} \frac{1}{C} \oint ds \left(\frac{11(\partial \hat{n}/\partial \delta)^2}{18|\rho(s)|^3} \right)_s$$

 $\partial \hat{n} / \partial \delta$ is the spin-orbit coupling function

• Total polarization change rate

$$\tau_{DK}^{-1} = \tau_{ST}^{-1} + \tau_{SD}^{-1}$$

• Equilibrium polarization

$$P(t) = P_{ens,DK} \left(1 - e^{-t/\tau_{DK}} \right) + P_0 e^{-t/\tau_{DK}}$$

where $P_{ens,DK} = P_{DK} \langle \hat{n} \rangle_s$ is the value of ensemble average of P_{DK} independent of *s* and P_0 is the initial polarization

Electron Interaction Region

• Downstream chicane for low- Q^2 tagging and polarimetry

JLEIC Ion Injector Chain

- ~150 MeV linac energy
- Warm low energy booster (LEB)
 - -54-56 LEB cycles
- Full-size high energy booster (HEB), also functioning as a stacker
 - Most of the bunch formation process can be done in the HEB, increasing the collider duty factor and time averaged luminosity

29

Ion Collider Ring

- Circumference of 2335.975 m optimized for synchronization
- 200 GeV/c protons
- 6 T $\cos \theta$ dipoles and $\cos 2\theta$ quadrupoles

30

Start-to-End Deuteron Acceleration in Ion Collider Ring

• Three deuterons with $\varepsilon_{x,y}^N = 0.5 \ \mu m$ and $\Delta p/p = 0, \pm 1 \cdot 10^{-3}$ accelerated at ~3 T/min in lattice with 100 μ m rms closed orbit excursion, $v_{sp} = 3 \cdot 10^{-3}$

 Deuteron spin is highly stable in figure-8 rings, which can be used for high precision experiments

Polarization Control in Ion Collider Ring

• 100 GeV/c figure-8 ion collider ring with transverse quadrupole misalignments

• Example of vertical proton polarization at IP. The 1st 3D rotator: $v = 10^{-2}$, $n_y=1$. The 2nd 3D rotator is used for compensation of coherent part of the zero-integer spin resonance strength

Incoherent Part of Zero-Integer Spin Resonance Strength

- Assuming normalized vertical beam emittance of 0.07 μm rad
- $v_p^{max} = 10^{-2}$, $v_d^{max} = 10^{-4}$ at **200 GeV/c** are sufficient to stabilize the polarization

Deuteron Spin Rotator Utilizing Longitudinal Fields

34

Experimental Scenarios

- Injection and acceleration of polarized protons in the spin transparency mode in RHIC
 - -Beam is injected vertically polarized
 - -Stable vertical polarization in RHIC is set by adjusting the angle between the snake axes φ_{sn} to ~10°. The spin tune is $v_y \approx \varphi_{sn}/\pi \approx 0.05$
- Demonstration of polarization control in the collider
 - -Demonstrate polarization reversal at the polarimeter
 - -Adjust the snake strengths to set $v_z = 0.01$
 - -Vertical polarization component at the polarimeter $n_y = -v_y / \sqrt{v_y^2 + v_z^2}$
 - -Sweep the angle between the snakes from -10° to $+10^{\circ}$ thus changing v_{sn} from -0.05 to +0.05

-A similar test with the solenoid off can measure the zero-integer spin resonance strength

