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1 Cut and Paste BTEX summary for Kovalev’s
IRs

Representational analysis[1, 2, 3, 4, 5, 6] allows the determination of the symmetry-
allowed magnetic structures that can result from a second-order magnetic phase
transition, given the crystal structure before the transition and the propagation
vector of the magnetic ordering. These calculations were carried out using ver-
sion 2K of the program SARAh-Representational Analysis.[7] They involve first
the determination of the space group symmetry elements, g, that leave the
propagation vector k invariant: these form the little group Gx. The magnetic
representation of a crystallographic site can then be decomposed in terms of the
irreducible representations (IRs) of Gy:

FMag = an/rlzf (1)

where n,, is the number of times that the IR '), of order pu appears in the
magnetic representation I'jzq4 for the chosen crystallographic site.

In our case, the crystal structure of insert composition formula/name before
the phase transition is described in the space group P 42/m n m (#136). This
space group involves 1 centring operations and 16 symmetry operations (Ap-
pendix A). Of these symmetry operations 16 leave the propagation k invariant
or transform it into an equivalent vector (Appendix B).

The decomposition of the magnetic representation I'p7q4 in terms of the
non-zero IRs of Gy for each crystallographic site examined, and their associated
basis vectors, 1,,, are given in Table 1. The labeling of the propagation vector
and the IRs follows the scheme used by Kovalev([8].
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2 Application of the Landau Theory

For a second-order transition a powerful simplification to the number of possible
structures arises as a consequence of the Landau theory: the ordering transi-
tion can involve only one IR becoming critical. Accordingly, the basis vectors'
involved in the resulting structure are limited to those associated with a sin-
gle IR and the number of “symmetry-allowed” magnetic structures possible for
a particular crystallographic site is simply the number of nonzero IRs in the
decomposition of its magnetic representation. The number of degrees of free-
dom to be refined at any one time is then simply the number of basis vectors
associated with the IR under study.

Remark: the application to Landauw Theory to a given system will depend
on the number of crystallographic sites and the the number of phase transitions
involved. The reader is encouraged to read the account given in Ref. [9] for
further information.
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the Marie-Curie project of the EC. It may be freely used and distributed. While
the copyright for all generated output from SARAh-Representational Analysis
is retained by the author, permission is given to the user for its reproduction in
any form upon the condition that it is appropriately acknowledged. Its calcula-
tions should be referenced as: A. S. Wills, Physica B 276, 680 (2000), program
available from www.ccpld.ac.uk A clip-on front end (SARAR-Refine) that en-
ables direct use of these Group Theory results with the GSAS and FullProf
refinement packages can also be found at this site.

References

[1] E. F. Bertaut, J. Appl. Phys. 33, 1138 (1962); E. F. Bertaut, Acta. Cryst.
A24, 217 (1968); E. F. Bertaut, J. de Physique Colloque, C1, 462 (1971);
E. F. Bertaut, J. Magn. Magn. Mat.24, 267 (1981).

[2] Yu. A. Izyumov, V. E. Naish, and R. P. Ozerov, Neutron Diffraction of
Magnetic Materials (Consultants Bureau, New York, 1991).

[3] C.J. Bradley and A.P. Cracknell, ‘The Mathematical Theory of Symmetry
in Solids’, Clarendon Press (Oxford, 1972).

[4] A.P. Cracknell, ‘Magnetism in Crystalline Materials’, Pergamon Press (Ox-
ford, 1975).

[5] A.S. Wills, J. de Physique, in press (2001).
[6] A.S. Wills, Phys. Rev. B, 63, 064430 (2001).

[7] A. S. Wills, Physica B 276, 680 (2000), program available from
www.ccpl4.ac.uk

Ithe Fourier components of the magnetization



[8] O.V.Kovalev, Representations of the Crystallographic Space Groups Edition
2 (Gordon and Breach Science Publishers, Switzerland, 1993).

[9] J. Rossat-Mignod in: ‘Methods in Experimental Physics’, ed. K. Sk 51 old
and D.L. Price (Academic Press, 1987). J. Rossat-Mignod in ‘Systematics
and the Properties of the Lanthanides’, Ed. S.P. Sinha, D. Reidel Publishing
(1983).

[10] While the Jones faithful representations conventionally correspond to the
vector formed from the operation of the rotation part of the element, R, on
the site coordinates (z, y, z), here we use it to demonstrate the effect of the
complete symmetry operator, g.

A Elements in the group Gy

B Elements in the group G,



BV components

; , m
VMo UTNYp  UMYc

My Mle

Ma

-4

4

IR BV Atom

—

Py

Iy

by

I3

P

Is

Py

I's

10

Iy

b

Py

s

Py

1—‘10

P10



IR BV Atom BV components

Mg Mp Me Mg TMp 1M,

(2 1 0 2 0 0 0 0

2 0 2 0 0 0 0

3 0 -2 0 0 0 0

4 0 -2 0 0 0 0

Py 1 2 0 0 0 0 0

2 -2 0 0 0 0 0

3 -2 0 0 0 0 0

4 2 0 0 0 0 0

Table 1: Basis vectors for the space group P 42/m n m with ky7 = (0, 0, 0).The
decomposition of the magnetic representation for the Cr site (0, 0, .333) is
insertdecomposition 1. The atoms of the nonprimitive basis are defined accord-
ing to 1: (0, 0, .333), 2: (.5, .5, .167), 3: (0, 0, .667), 4: (.5, .5, .833).

IR BV ‘ Point Group  Shubnikov Group
insert table contents 1 ‘

Table 2: The point symmetry and Shubnikov space group for the space group
P 42/m n m with ky7 = (0, 0, 0).The decomposition of the magnetic represen-
tation for the Cr site (0, 0, .333) is insertdecomposition 1.



Element

Rotation matrix

IT notation

Kovalev notation

Jones symbol

In R g ={R|T} gn ={hn |71}
1 00
91 010 {E| 00 0} {h1] 000} Z,Y, %
00 1
100
g 010 {C5.1 000} {hs| 000} —z,—y, 2
00 1
010
g3 100 {(Cil 555 | {ha| 555} | —y+i o+l 241
00 1
010
g4 100 {CLl 555} | {his| 555} | y+i,-z+3,2+1
00 1
100
gs 010 {Coy| 555} | {hs| 555} | —z+iy+3, —2+1
0 0 1
100
g6 010 {Cou| 555} | {ha| 555} |o+35,—y+35,—2+3
0 0 1
010
gr 1 0 0 {Cza|000} {h16| 000} Yy, r,—z
0 0 1
010
gs i 0 0 {Cgb‘OOO} {h13| 000} Y, —T,—Z2
0 0 1
100
go 0 I 0 {I|OOO} {h25| 000} —T,—Y,—Z2
0 0 1
100
J10 010 {o.] 00 0} {has | 000} z,Y,—2
0 0 1
010
911 100 {Si| 5.5.5} | {has| 5.5.5} |y+3, -2+i—2+3
0 0 1
010
g12 100 {Sf.15.55} | {hgo| 5.5.5} | —y+3,0+%,—2+3
0 0 1




Element | Rotation matrix | IT notation | Kovalev notation Jones symbol

In R gn:{R|T} gn:{hn|7'}
1 0 0

913 010 {oy| 555} | {har| 555} |z+i—y+iz2+1
0 0 1
100

g4 010 {os] 5.5.5} | {hag| 555} | —v+3.y+3,2+3
0 0 1
01 0

g15 100 {0da] 0 0 0} {hao | 000} —y,—T, %z
0 0 1
01 0

916 1 0 0 {oa] 0 0 0} {hs7 | 000} Y, T, 2
0 0 1

Table 3: Symmetry operators of the space group P 42/m n m. The no-
tations used are of the International Tables, where the elements are sep-
arated into rotation[3] and translation components, and the Jones faithful
representations[10].



Element

Rotation matrix

IT notation

Kovalev notation

Jones symbol

9n R gn={R|7} gn =A{hn | T}
1 00

91 010 {E] 00 0} {h1] 000} Y, 2
00 1
100

g6 010 {Cs] 5.5 .5} {hy| 5.5 .5} T4+ -y+i-—2+1
0 0 1
100

gs 010 {Cyy| 5.5 .5} {hs| 5.5 .5} —r+iy+3,-2+1
0 0 1
100

g2 010 {C5,] 000} {hy| 000} —x,—Y, 2
00 1
010

gs 100 {C9%| 010} {h13] 010} —y,—z+1,—2
0 0 1
010

g3 100 {Cy] 5.5 .5} {his| 5.5 .5} —y+iz+32+13
00 1
010

g4 100 {CL.] 5.5 .5} {hi5| 5.5 5} y+3,-r+32+1
001
010

g7 100 {Coq| 010} {his| 010} y,x+1,—2
0 0 1
100

go 0 I 0 {I‘OOO} {h25| 000} —T,—Y,—%2
0 0 1
100

g4 010 {os] =5 —5 —5} | {hog| —5 -5 -5} | —z—F,y—%,2—1
00 1
100

913 010 {oy| =5 —5 —5} | {hor| =5 -5 -5} | z—%,—y—2,2—-12
00 1
100

g10 010 {c.] 000} {has | 00 0} z,Y,—2
0 0 1




Element

Rotation matrix

IT notation

Kovalev notation

Jones symbol

In R gn={R| T} gn ={hn | T}
010
916 100 {oap] 0 — 10} {hsz | 0 —10} Y, x— 1,2
0 0 1
010
g1 100 {Se.l =5 -5 -5} | {hss| -5 -5 -5} |y—3,—v—2,—2—1%
0 0 1
010
g12 1 00 {Sf.| =5 -5 =5} | {hgo| -5 -5 -5} | ~y—2,0—1 —2-1
0 0 1
010
g1s 100 {04a] 0 — 10} {hso | 0 —10} —y,—x— 1,2
0 0 1

Table 4: Symmetry elements of the little group Gk. The notations used are of
the International Tables, where the elements are separated into rotation[3] and
translation components, and the Jones faithful representations[10].




