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Overview

Aim: Introduce concepts and tools to describe and determine magnetic structures

• Basic description of magnetic structures and propagation vector

• What are the ways to describe magnetic structures properly and to access the 
underlying physics?

– Representational analysis

– Magnetic space groups (Shubnikov groups)
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Brief History of magnetic structures
• ~500 BC: Ferromagnetism documented 

in Greece, India, used in China

• 1932 Neel proposes antiferromagnetism

Sinan, 
~200 BC

• 1943: First neutron experiments come out of 
WW2 Manhatten project at ORNL

• 1951: Antiferromagnetism measured in MnO
and Ferrimagnetism in Fe3O4 at ORNL by 
Shull and Wollan with neutron scattering

• 1950-60: Shubnikov and Bertaut develop 
methods for magnetic structure description

• Present/Future: 
- Powerful and accessible experimental and 
software tools available
- Spintronic devices and Quantum 
Information Science
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• Consider an ion with unpaired electrons

• Hund’s rule: maximize S/J

Intrinsic magnetic moments (spins) in ions

m=gJJ (rare earths)

m=gsS (transtion metals)

Ni2+ has a localized magnetic moment of 2µB

core

Ni2+

• Magnetic moment (or spin) is a classical “axial vector” (magnetic dipole) 
generated by an electric current.
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Ordered spins in a crystalline lattice

• Exchange interactions exists between ions with spin that can stabilize long range magnetic order

– Direct, superexchange, double exchange, RKKY, dipolar

Paramagnetic state
<Si> = 0

• Time-reversal is a valid symmetry operator for paramagnetic phase, but is broken in the ordered phase 

Jij

Eij=-JijSi.Sj

Ferromagnetic state
<Si> ≠ 0

Antiferromagnetic state
<Si> ≠ 0

Ferrimagnetic state
<Si> ≠ 0

Curie-Weiss:
Χ= C/(T-θCW)

Different magnetic atoms or 
different oxidation states for 
the same atom)
→ Non-zero total magnetic 
moment
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Overview

Aim: Introduce concepts and tools to describe and determine magnetic structures

• Basic description of magnetic structures and propagation vector

• What are the ways to describe magnetic structures properly and to access the 
underlying physics?

– Representational analysis

– Magnetic space groups (Shubnikov groups)
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Magnetic structures

• Magnetic structures can be simple or complex (frustrated, spin density wave, sine wave, 
canonical, helical, Skyrmion, etc).

• What is a magnetic structure:

– Description of whatever magnetic atom of whatever unit cell’s direction and 
magnitude of the magnetic moment.

– The order has some translational symmetry (the moments in different unit cells are 
related in a periodic way).

– Long correlation length

• What is NOT a magnetic structure:

– An arbitrary set of arrows in a box that doesn’t have any symmetry constraints

– Problem arose from lack of standardization and software limitations (think about 
crystallography success)

– Simple rules exist, complete rules now becoming accessible and mainstream
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Magnetic structures

• Lots of types (and mixtures of these types). 
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Magnetic structures

• Lots of types (and mixtures of these types). 

These can all be described using the propagation
vector formalism.

This forms the basis for extension to a complete and
robust symmetry description and categorization
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Magnetic propagation vector: k-vector
• Magnetic and crystallographic unit cells are not necessarily the same size. 

• Convenient to introduce a propagation vector (k-vector): 
Describes the relation between the nuclear and magnetic unit cells

• Aim: Can state just the spins in the 0th crystallographic unit cell and the k-vector describes how the spins 
are related in all other unit cells.

k=(0,0),  FM k=(0,0),  AFM k=(½,0),  AFM

a

b

Crystal unit cell
Magnetic unit cell

k=(¼,0),  AFM

• k-vector directly observable with neutron scattering: 

– They are shifted from the positions of nuclear peaks (τ) by the k-vector value, i.e Qmag= τ + k

– k-vector can be commensurate (e.g. 1/4) or incommensurate (e.g. 1/13)

– Can have multiple k-vectors 
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General magnetic structure description with k-vectors
• Can state only the spins in the 0th crystallographic unit cell and the k-vector 

describes how the spins are related in all other unit cells.

• For all magnetic ordering this can be expressed in the Fourier series:

– mj is the magnetic moment at the atomic site j in some unit cell that is 
related to the 0th cell (G0) by a translation R.

– Sj (Basis vector) is the magnetic moment in the 0th cell
i.e. it describes the projection of the moments (aka Ψj).

– k is the propagation vector

– For many cases the sum of several basis vectors is required Sj=ΣυCυSυ

(finding this is goal of representational analysis, see later)

mj=Σk Sj
k e-2πik.R

ml

m0

Correlation of the spin mj on 
atom j within unit cell l to m0 in 
the 0th unit cell translated by R

• mj is real, but expression includes i, need the condition:    S-kj = Skj*

mj=Σk Sj
k [cos(-2πk.R)+isin(-2πk.R)]
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General magnetic structure description

• A magnetic structure is fully described by:

– k-vector (either commensurate or incommensurate)

– Basis vectors Skj: Fourier components for each magnetic atom j and k-vector 
(Skj is a complex vector, 6 components)

– DyMn6Ge6: See previous Magnetic workshop tutorials for this example.
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Examples of using the k-vector formulism: mj= Sj
k e-2πik.R

• Simplest case of k =(0,0,0) = 0

• mlj = S0j e
-2πik.R = S0j e

-2πi0.R = S0j e
0 = S0j = m0J

• Orientation of the magnetic moments in any cell of the crystal are identical to the 0th cell 
(i.e. magnetic unit cell = crystallographic unit cell)

• But does NOT say what the magnetic structure is.

– k=0 can be ferromagnetic, antiferromagnetic, 
ferrimagnetic, collinear or non-collinear.

– Only for Bravais lattices (single atom per primitive 
cell) does it mean it is FM 

– In all other cases need the Basis vectors (Sj) to 
describe magnetic structure
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Examples of using the k-vector formulism: mj= Sj
k e-2πik.R

• Consider half a reciprocal lattice: k=00½

• Basis vector in the 0th cell is S=(010), i.e. spins along b 

• Each plane corresponds to a lattice translation R=001

• This is an example of a real Basis vector → sine component is zero.

a b

c

mj= Sj
k e-2πik.R = (010) exp[-2πi(00½).(000)] = (010) 

mj= Sj
k e-2πik.R = (010) exp[-2πi(00½).(001)] = (0-10) 

mj= Sj
k e-2πik.R = (010) exp[-2πi(00½).(002)] = (010) 

mj= Sj
k e-2πik.R = (010) exp[-2πi(00½).(003)] = (0-10) 

mj= Sj
k e-2πik.R = (010) exp[-2πi(00½).(004)] = (010) 
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Examples of using the k-vector formulism: mj= Sj
k e-2πik.R

• k between 0 and ½ gives a non-zero sine component and S is real

• This makes mj complex, but it needs to be real

• Need to consider both k and –k propagation vectors
(→ for incommensurate need at least 2 arms of the star – see later)

mj=Σk Sj
k e-2πik.R = Sj

k e-2πik.R + Sj
-k e-2πi(-k).R

mj = Sj
k e-2πik.R + (Sj

k)* e-2πi(-k).R             since S-k
j = Sk

j*

• Expansion of the exponentials leads to:

mj = 2ReSj
k [cos(-2πk.R)] + 2ImSj

k [sin(-2πk.R)] 

• Second term is zero since S is real

• → Amplitude modulated sine structure (spin density wave)

mj=Σk Sj
k [cos(-2πk.R)+isin(-2πk.R)]
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Examples of using the k-vector formulism: mj= Sj
k e-2πik.R

• S is complex and k is incommensurate

• This makes mj complex, but it needs to be real

• Again consider k and –k vectors

mj = 2Re(Sj
k) [cos(-2πk.R)] + 2Im(Sj

k) [sin(-2πk.R)]

• Now the second term is non-zero

• If Re(S) ≠ Im(S) this describes an ellipse 
→ elliptical helix structure

• If Re(S) = Im(S): mj = 2Re(Sj
k) [cos(-2πk.R)] + sin(-2πk.R)]. 

This describes a circle 
→ circular helix structure
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Multi-k structures: the Skyrmion lattice

• Skyrmion lattice is an example of a multi-k incommensurate magnetic structure

• Lattice of clockwise magnetic whirlpools

k1=(2𝛼,-𝛼,0)

k2=(-𝛼,2𝛼,0)

k3=(-𝛼,-𝛼,0)

Can have k4=(000)

• Here 𝛼=0.11
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k-vectors with values >1/2

• k-vectors are referred to the reciprocal basis of the 
conventional direct cell

• Most cases magnetic unit cell is the same or larger than the 
crystal unit cell

• Centered cells → can have k>0.5 e.g. (k=010)

• BCC is an example (conventional (cubic) unit cell contains 
two primitive unit cells)

• Translational vectors have fractional components

• The index j runs on the atoms contained in a primitive cell
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Star of the propagation vector

• Three possibilities for propagation vector in real materials:

– Single k-vector (most common)

– Multi-k: More than one k-vector of the star are involved (keep sum in 
expression)

– One k-vector and its harmonics, k, k/2,… (sum over harmonics of k)

mj=Σk Sj
k e-2πik.R
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Star of the propagation vector

• Consider effects of the symmetry (g) of the crystal space group (G0) on the k-vector.

– i.e. apply a symmetry element g with various rotations (h) and translations (τ), i.e. g={h, τ}

• The rotation operation h will act on the k-vector: k’=kh

→ k’=k (unchanged)    or   k’≠k (inequivalent propagation vector produced)

• The set of non-equivalent k vectors obtained by apply the rotational symmetry operations gives 
the “star of k”:

• {k} = {h1k1,h2k1,h3k1,…} = {k1,k2,k3,…}

• The number of arms (lk) of the star is equal to the number of symmetry elements of G0 (cosets)

• First coset termed the “Little group Gk”.

– leaves k invariant or equal to an equivalent k-vector

– Gk is always a subgroup of G0

– Important for Representational Analysis approach

ki vectors are called 
the arms of the star
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Star of the propagation vector: Little Group (GK)

• k-vector reduces the space group symmetry from G0 to Gk

• The number of elements of the little group Gk depend on the k-vector

• e.g. consider space group 227:

– If k= (0 0 0) → 48 elements in Gk

– If k= (½ 0 0) → 8 elements in Gk

– If k=(½ ½ ½) → 12 elements in Gk

• This is because different planes, lines and points will correspond to different 
symmetries and so result in different a Gk.
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Star of the propagation vector

• Star of the propagation vector k=(x 0 0) in the tetragonal 
space group I4/mmm (point group D17

4h)

• The arms of the star are:

– k1=(x 0 0)

– k2=(0 -x 0)

– k3=(-x 0 0)

– k4=(0 x 0)

a*
b*

c*

k1

k3

k4
k2
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Domains

• Transition from paramagnet to ordered magnetic state lowers symmetry.

– Can create domains

• If G0 is paramagnetic group of order nP and GM is ordered magnetic space group of order nM

→ nP/nM number of domains

• 4 types of domains

– Time-reversed domains: 180° (π) domains → loss of time-reversal symmetry

– Orientation domains: s-domains → loss of rotation symmetry

– Configuration domains: k-domains → loss of translational symmetry

– Chiral domains → loss of inversion symmetry (-1)
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180° (π) domains → loss of time-reversal symmetry

• Moment direction reversed between domains
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s-domains → loss of rotation symmetry

• “Orientation domains” caused by lowering of symmetry from paramagnetic to magnetic 
phase.

• Loss of rotational invariance.

• No loss of translational symmetry.
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k-domains → loss of translational symmetry

• “Configurational domains”

• Each vector in the star generates a different (equivalent) configuration domain.

– e.g. k1=(1/2,0,0), k2=(0,1/2,0), k3=(0,0,1/2)

• Each domain gives a separate set of magnetic reflections 

k1

k2

k3
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k-domain in MnO
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Chiral domains → loss of inversion symmetry

• Two domains of opposite handedness generated by loss of inversion symmetry.

• Paramagnetic space group is centrosymmetric and magnetic space group is 
not.
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Constrain and go beyond the simple k-vector formalism
• K-vector formulism is a simple and intuition way to arrive at any magnetic structure.

• But things can get complicated fast: Lots of variables and limited information from experiment

• Want a systematic way to determine and describe magnetic structures, i.e. a better way

• Symmetry analysis goes beyond trial and error analysis

– Neumann’s principle: If a crystal is invariant under a symmetry operation, its physical properties 
must also be invariant under the same operation

– Symmetry dictates what is allowed and what is forbidden/constrained → gives correct/physical 
magnetic structures

– Unless there is a phase transition, what is forbidden/constrained by symmetry is “protected”, i.e. 
it will remain forbidden unless the symmetry changes.

– Easier

– Software available to use
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Overview

Aim: Introduce concepts and tools to describe and determine magnetic structures

• Basic description of magnetic structures and propagation vector

• What are the ways to describe magnetic structures properly and to access the 
underlying physics?

– Representational analysis

– Magnetic space groups (Shubnikov groups)
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What are the ways to describe magnetic structures?

Representational analysis (Irreps)

– Most general approach

– Finds basis vectors in k-vector approach

– Equally applicable to simple 
commensurate and complex 
incommensurate magnetism

– Can give direct information on 
Hamiltonian

– Assumes knowledge of non-magnetic 
crystal structure

Two main approaches

– Historically competing 

– Until very recently Representational analysis “easier” to apply to experimental data

– Since 2010 magnetic space group approach standardized and now equally accessible

– Current/future: combined approach for full insights with lots of powerful software

Magnetic (Shubnikov) Space Groups

– Extension of crystallographic space 
groups to include spin (time-reversal)

– Maintains symmetry of magnetic/non-
magnetic atoms so can provide insights

– Incommensurate only recently added 
through supersymmetry description
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Representational analysis is, first of all, a tool for finding magnetic structures
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Representation analysis: further development by Izyumov
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Properties of a Group (G)

• A group contains a set of elements A,B,C… that make up the group that satisfy the 
requirements:

– Closure: Product of two elements of a group is also a member of the group AB ∈ G

– Associativity: A(BC)=(AB)C for all ABC ∈ G

– Identity (E): There is an identity element (E) satisfying EA=AE=A  if A ∈ G

– Inverse: There must be an inverse of each element. AA-1=A-1A=E

• Order of a group (h) is the number of elements in the group (can be finite or infinite).
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Representational analysis

• A representation of any group G is a mapping of the elements of G to a set of n × n 
matrices, Γ={(g)|g ∈ G}, which have the same group structure under matrix 
multiplication.

– e.g.     Γ(g1g2)= Γ(g1) Γ(g2)

• The number n is the dimension of the abstract representation space in which the 
matrices are embedded and is called the dimension of the representation.

• Two matrices are equivalent if there is a similarity transformation U (change of basis) 
between them common to all matrices: Γ’(g)= UΓ(g)U-1

• A group can have an infinite number of representations of arbitrary dimension.

• Can find an appropriate similarity transformation U to reduce the representation to 
block-diagonal form.

– Irreducible Representation (irreps) are those representations that cannot be reduced 
further.

If the dimensions of representations Γv are the smallest 
possible, the sub-matrices for the different group 
elements are the irreps
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Representational analysis

• Consider a group G= {a,b,c….} that can have the representation Γ= {Γ(a), Γ(b), Γ(c),….} 

• Find a similarity transformation U that converts all matrices to the same block-diagonal form 
→ obtain an equivalent representation that can be decomposed:    Γ(g)=UΓ(g)U-1

Γ(g)= = A(g)+2B(g)+C(g)
Matrices A(g),B(g) and C(g) are all 
representations of the group G.

Irreducible 
representations:

Γ1={A(a),A(b),A(c),…}
Γ2={B(a),B(b),B(c),…}
Γ3={C(a),C(b),C(c),…}
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Why Representation analysis?

• Key point is that IRREDUCIBLE representations cannot be separated into smaller pieces.

• Offer the building blocks to construct all possible magnetic structures.

• A general approach to parameterize any “distortion”

– Molecular vibrations

– Hybridized and molecular orbitals

– Crystal-field splitting

– Crystal band structure

• Irreps provide a symmetry-based coordinate system (parameter set) for describing 
deviations from symmetry.
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Why Representation analysis?

• Based on Group theory: developed to determine the coupling and orientation of mj

• Get several Irreps, Γmag =  ΣvnvΓv, that describe all possible magnetic structures. Landau simplifies.

• Equally applicable to commensurate/incommensurate. 

• Reduces the number of possible magnetic structures and number of parameters needed in the 
refinement of the structure.

– A systematic way of finding all possible magnetic structures

– Often complex and trivial spin orders can be determined with the same effort.

• The irreps of a system are intimately related to the eigenvectors of its Hamiltonian. Using 
representation theory, to define how a system changes, indirectly probes the energy terms driving 
a phase transition.
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Using Representational analysis

• Determine k-vector, crystallographic space group (G0) and positions of the magnetic atoms.

• Consider the little group GK.

• Consider the effect of symmetry operations of Gk on the magnetic atoms, i.e., the change of the 
position and moment direction. The magnetic representation of the overall effect is given by the 
direct product (Γmag):

Γmag=Ṽ x Γperm

Ṽ: change of roation for each atom 
(axial-vector representation,)

Γperm: change of position for each atom 
(permutation representation)

• Decompose the magnetic representation into the sum of irreps of Gk. 
(i.e block diagonalize the matrix as much as possible): Γmag =  n1 Γ1 + n2 Γ2 + …

• For each irrep Γv appearing in the decomposition of Γ, find its basis vectors Sv
1, Sv

2, …
→ If it contains an l dimensional irrep, Γi

(l), ni times, there are ni x l basis vectors. 

• The set of basis vectors for each irrep describes allowed magnetic structures.
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Basis vectors

• Consider the decomposition of the magnetic representation: Γmag = 1Γ1
(1) + 1Γ2

(2)

Superscript represents the order of the irreducible representation and the subscript is its index or label.

→ Γmag contains irreducible representation number 1 (which is of order 1) once, and irreducible 
representation number 2 (which is of order 2) once. This means that Γmag contains one basis vector 
associated with Γ1 and two associated with Γ2.

mj=Σk Sj
k e-2πik.R

Sj
k = Σnλv Cnλ

v Snλ
kv(js)

Basis vectors: Calculation of the basis 
vectors is done using the projection 
operator technique
→ take a test function and project from 
it the part that transforms according to 
each of the irreps.

Mixing coefficient: the free parameters that are varied to determine the magnetic structure
(they correspond to the order parameters in Landau theory)

k: propagating vector
v: reference to irrep Γv

n: index from 1 to nv Γmag= Σv nvΓv

λ= index running from 1 to dim(Γv)

Recall from earlier for 
magnetic structure: 
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Simplification of problem: Landau Theory

• Landau theory: In a second order phase transition, a single symmetry 
mode is involved 

→ Only need one IR to describe the magnetic structure, all other irreps 
cancel

• For 1 atomic site can have lots of IRs. Can use this to greatly simplify 
analysis.

• Also helps with complex cases of more than one atomic site, e.g. A and B

• Assume representational analysis gives the following irreps:

– Site A: Γmag = 1Γ1 + 0Γ2 + 1Γ3 + 1Γ4

– Site B: Γmag = 1Γ1 + 1Γ2 + 0Γ3 + 0Γ4

• If both sites order together and this is second order

– Magnetic structure described by only Γ1

Nobel Prize 1962 "for 

his pioneering theories 

for condensed matter, 

especially liquid helium" 
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Using Representation Analysis 

• Determining the basis vectors of irreps of space-groups is a well-known but difficult 
mathematical problem

• However, numerous tools are available: 

– BasIreps (included with Fullprof)

– SARAh

– Bilbao Crystallographic Server

– JANA2006

– ISOTROPY

• In practice representational analysis is very useful and intuitive

• Avoids incorrect and unphysical magnetic structures

• Perhaps conceptually more abstract than magnetic space groups.

Propagation k-vector 
(use neutron/x-ray 
scattering)

Crystallographic 
space group (G) in 
non-magnetic phase

+
Software

List of irreps with 
basis vectors to 
produce allowed 
magnetic 
structures

Position of magnetic 
atoms

Try different 
irreps and alter 

mixing 
coefficients

Y
o

u
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An example of using Irreps: Pyrochlores

Neutron Scattering - Magnetic and Quantum 
Phenomena, Chapter 4 - Magnetic Structures  
V. Ovidiu Garlea and Bryan C. Chakoumakos 

Magnetic representation of the 
crystallographic A3+ site in A2B2O7:

Γmag(A) = 1Γ3
(1) + 1Γ5

(2) + 1Γ7
(3) + 2Γ9

(6)
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An example of using Irreps: Pyrochlores

Neutron Scattering - Magnetic and Quantum 
Phenomena, Chapter 4 - Magnetic Structures  
V. Ovidiu Garlea and Bryan C. Chakoumakos 

Magnetic representation of the 
crystallographic A3+ site in A2B2O7:

Γmag(A) = 1Γ3
(1) + 1Γ5

(2) + 1Γ7
(3) + 2Γ9

(6)

5d pyrochlores → Weyl fermions
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An example of using Irreps: Pyrochlores

Neutron Scattering - Magnetic and Quantum 
Phenomena, Chapter 4 - Magnetic Structures  
V. Ovidiu Garlea and Bryan C. Chakoumakos 

Magnetic representation of the 
crystallographic A3+ site in A2B2O7:

Γmag(A) = 1Γ3
(1) + 1Γ5

(2) + 1Γ7
(3) + 2Γ9

(6)
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What are the ways to describe magnetic structures?

Representational analysis (Irreps)

– Most general approach

– Finds basis vectors in k-vector approach

– Equally applicable to simple 
commensurate and complex 
incommensurate magnetism

– Can give direct information on 
Hamiltonian

– Assumes knowledge of non-magnetic 
crystal structure

• Two main approaches

– Historically competing 

– Until very recently Representational analysis “easier” to apply to experimental data

– Since 2010 magnetic space group approach standardized and now equally accessible

– Current/future: combined approach for full insights with lots of powerful software

Magnetic (Shubnikov) Space Groups

– Extension of crystallographic space 
groups to include spin (time-reversal)

– Maintains symmetry of magnetic/non-
magnetic atoms so can provide insights

– Incommensurate only recently added 
through supersymmetry description
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Magnetic space groups (Shubnikov groups)

1929: Heesch, introduces the antiidentity operation properties: u2 = 1, ut = tu for all t∈T

– aka time reversal group = {1,1’}          (Z. Krist. 71, 95)

1945: Shubnikov re-introduces concept of bi-colour point groups 

1951: Shubnikov describes and illustrates all of the bicolor point groups (→ Shubnikov groups)

1955: Belov, Neronova, Smirnova (BNS) - first complete listing of the Shubnikov groups (Sov. Phys. Crys 1, 487-488)

1957: Zamorzaev, group theoretical derivation of Shubnikov groups (Kristallografiya2, 15 (Sov. Phys. Cryst., 3, 401))

1965: Opechowski and Guccione (OG), first complete derivation and enumeration of the Shubnikov groups

2001: Litvin, corrected Opechowski-Guccione symbols (Acta Cryst. A57, 729-730)

2010: Magnetic Space Groups on computer programs (Stokes and Campbell, BYU)

Future: combine magnetic space group and representational analysis approaches for complete insights

• Natural extension of the crystallographic space group description. 

• But only recently became accessible to the wider community.
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Magnetic space groups (Shubnikov groups)

• Use description from crystallography

• 230 Space groups for crystals describe positions of atoms.

• Magnetic structures → add magnetic spin to atom positions …. spins are axial vectors.

1’

→
Time reversal = spin reversal
(changes the sense of the current)

The spin reversal operator 1’ flips the magnetic moment

• Need spin reversal operator 1’ (aka antisymmetry, antiidentiy, or time-reversal)

– Defines the current loop type symmetry of an axial vector 

– Can be combined with any conventional operator h to form a new primed operator h’
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Magnetic space groups (Shubnikov groups)

• Use description from crystallography

• 230 Space groups for crystals describe positions of atoms.

• Magnetic structures → add magnetic spin to atom positions …. spins are axial vectors.

• Need spin reversal operator 1’ (aka antisymmetry, antiidentiy, or time-reversal)

– Defines the current loop type symmetry of an axial vector 

– Can be combined with any conventional operator h to form a new primed operator h’

Symmetry Operations on:

- Polar vector (e.g dipole)
[Parity even, time-odd]

- Axial vector (magnetic spin)
[Parity odd, time even]

m’

m’

mirrormirror anti-mirror
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Magnetic space groups (Shubnikov groups)

• Use description from crystallography

• 230 Space groups for crystals describe positions of atoms.

• Magnetic structures → add magnetic spin to atom positions …. spins are axial vectors.

• Need spin reversal operator 1’ (aka antisymmetry, antiidentiy, or time-reversal)

– Defines the current loop type symmetry of an axial vector 

– Can be combined with any conventional operator h to form a new primed operator h’

Inversion (-1)

o

Inversion (-1)

o

Symmetry Operations on:

- Polar vector (e.g dipole)
[Parity even, time-odd]

- Axial vector (magnetic spin)
[Parity odd, time even]
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Building the magnetic space groups (Shubnikov groups)

• By associating the 1’ operator with a color change (black to white or black to red) the magnetic 
symmetry theory was termed black-white symmetry.

• The original 230 space groups are included as colorless groups and keep their standard labels

– e.g. Pmmm

• A further 230 groups are created by adding the 1’ operator as an extra symmetry operation 

– e.g. Pmmm’

– These correspond to paramagnetic states and are termed grey (each magnetic site is both 
black and white = grey) 

• The remaining 1191 magnetic space groups are created by combining the 1’ operator with one or 
more of the symmetry operation in each of the 230 crystallographic space groups 

– e.g. Pm’mm where the mirror plane perpendicular to a is now an anti-mirror and the other two 
are unchanged.

→ Combining all possibilities leads to 1651 magnetic space groups
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Building the magnetic space groups

• 230 crystallographic space groups

→ add spin-reversal operator 1’

• 1651 Magnetic (Shubnikov) Space Groups

Type-I: M=G
no primes 

(single color)

230

Type-II: M=G+G1’
all primed and unprimed 

(paramagnetic or gray groups)

230

Type-III (3a): M=D+(G-D)’ 
half are primed

(black-white groups)

Groups of the “first kind”

D is translationgleiche

D translation is the same as G

674

Type-IV (3b): M=D+(G-D)’ 
half are primed

(black-white groups)

Groups of the “second kind”

D is klassengleiche

D contains antitranslations leading to 

primitive magnetic cells larger than 

primitive crystal cells

517

Total magnetic space groups 1651

For each non-magnetic space group (G), we can
construct multiple magnetic space groups (M).
Some of them involve a non-magnetic subgroup (D)
congaing half the elements of G
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Building the magnetic space groups

Don’t panic → All the hard work is done by Bilbao 
Crystallographic Server or ISOTROPY software suite

Type-I: M=G
no primes 

(single color)

230

Type-II: M=G+G1’
all primed and unprimed 

(paramagnetic or gray groups)

230

Type-III (3a): M=D+(G-D)’ 
half are primed

(black-white groups)

Groups of the “first kind”

D is translationgleiche

D translation is the same as G

674

Type-IV (3b): M=D+(G-D)’ 
half are primed

(black-white groups)

Groups of the “second kind”

D is klassengleiche

D contains antitranslations leading to 

primitive magnetic cells larger than 

primitive crystal cells

517

Total magnetic space groups 1651

Example based on space group P2/m
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Magnetic space groups

• Daniel Litvin provided a full description of all Shubnikov (Magnetic Space) groups

• Freely downloadable

– Acta Cryst A57, 729-730 (2001)

– Acta Cryst. (2008). A64, 419-424 (2008)



55 Magnetic Symmetry: an overview of Representational Analysis and Magnetic Space groups

A note on magnetic space group notations

• Two notations for describing magnetic space groups in the literature:

– Belov-Neronova-Smirnova (BNS)
N. V. Belov, N. N. Neronova and T. S. Smirnova, Kristallografiya 2, 315 (1957) (English translation: 
Sov. Phys. Crystallogr. 2, 311).

– Opechoski-Guccione (OG)
W. Opechowski and R. Guccione, Magnetic Symmetry, in Magnetism (G.T. Rado and H. Shull, 
eds.), Vol II A, Ch. 3, 105 Academic Press, New York. (1965).

• Identical, expect for black-white magnetic space groups (type-IV).

• Recently a list of all 1651 magnetic space groups published.
Similar form to Int. tables for crystallographic groups. 

– D. B. Litvin, Acta Cryst. A64, 419 (2008). (in OG notation)

– H. Grimmer, Acta Cryst. A65, 145 (2009). (reinterpretation for BNS)
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Magnetic Superspace groups
• Recently magnetic space group approach has now been fully generalized to include 

incommensurate structures beyond the 1651 Shubnikov groups

• Supersymmetry should soon be implemented into Fullprof
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Magnetic space groups: all atoms

• The non-magnetic atoms are also often important in the physics

• Magnetic space groups contain all information on crystal and magnetic symmetry of 
whole structure

• The same spin arrangement can produce different magnetic space groups (and 
different physical properties, e.g. ferroic) depending on the symmetry of the parent
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Determining magnetic structures

• Collect the bulk data and scattering data

• Identify the propagation vector (k-vector)

• Explore the symmetry allowed magnetic structures through Representational 
analysis and/or magnetic space groups

• Select the best physical meaningful models compatible with ALL data (not just 
neutron data)

• Refine direction and amplitude of the Fourier components (Basis vector) 
[Neutron diffraction]

• Now every magnetic structure reported should (must?!) have a magnetic 
space group. Just like all crystal structures reported have a space group.
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Software Tools
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Some references on magnetic symmetry

• Juan Rodríguez-Carvajala, JacquesVillain, “Magnetic structures” https://doi.org/10.1016/j.crhy.2019.07.004

• J. Rodríguez-Carvajal and F. Bourée, “Symmetry and magnetic structures” DOI: 10.1051/epjconf/20122200010

• J M Perez-Mato, J L Ribeiro, V Petricek and M I Aroyo “Magnetic superspace groups and symmetry constraints 
in incommensurate magnetic phases”. doi:10.1088/0953-8984/24/16/163201

• A. Wills, “Magnetic structures and their determination using group theory” https://doi.org/10.1051/jp4:2001906

• Yurii A Izyumov, “Neutron-diffraction studies of magnetic structures of crystals” 
https://doi.org/10.1070/PU1980v023n07ABEH005115

• J.M. Perez-Mato, S.V. Gallego, E.S. Tasci, L. Elcoro, G. de la Flor, and M.I. Aroyo, “Symmetry-Based 
Computational Tools for Magnetic Crystallography” 10.1146/annurev-matsci-070214-021008

• Garlea and Chakoumakos, “Magnetic Structures” chapter in Experimental 

Methods in the Physical Sciences vol. 48, p.203-290 Academic Press, 2016

https://doi.org/10.1016/j.crhy.2019.07.004
https://doi.org/10.1051/jp4:2001906
https://doi.org/10.1070/PU1980v023n07ABEH005115
https://www.sciencedirect.com/science/journal/10794042
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Conclusion

• Magnetic structures can be described by working through propagation 
vector formulism → but lack of constraints can lead to problems

• Use of symmetry is extremely powerful and helpful

• Either Representational Analysis or Magnetic Space Groups offer routes to 
determine the correct magnetic structure.

– Using both is better and gives most insights into the physics.

• Software is now available to do both routinely.


