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Overview

Aim: Infroduce concepts and tools to describe and determine magnetic structures

e Basic description of magnetic structures and propagation vector

« What are the ways to describe magnetic structures properly and 1o access the
underlying physics?

— Representational analysis
- Magnetic space groups (Shubnikov groups)
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ORNL Graphite Reactor
1943-1963

Briet History of magnetic structures

« ~500 BC: Ferromagnetism documented n Sinan,
in Greece, India, used in China ~200 BC
* 1932 Neel proposes antiferromagnetism _
cn;-‘sﬁﬁll}; m_ue'_v%-l-:a‘r?ww -
i ]943 FlrST neUTron eXperlmenTS come OUT Of Neutron Diffraction by Paramagnetic and Antiferromagnetic Substances
WW2 Manhatten project at ORNL C. G, Suvis, W. A Srasvses, o . O, Worra

Oak Ridge National Laboratory, Oak Ridge, Tennessee
(Received March 2, 1951)
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e 1951: Antiferromagnetism measured in MNO
and Ferrimagnetism in Fe;O, at ORNL by
Shull and Wollan with neutron scattering
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* Present/Future: 2

Mn ATOMS IN MnO
- Powerful and accessible experimental and e e ?-ZL_ I
software tools available
- Spintronic devices and Quantum
Information Science
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o 1950-60: Shubnikov and Bertaut develop
methods for magnetic structure description
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Intrinsic magnetic moments (spins) in ions

« Consider an ion with unpaired electrons

e Hund’s rule: maximize S/J

‘ m=g,J (rare earths)

@ - m=g.S (transtion metals)
Ni°* has a localized magnetic moment of 2y

V4

Ni2*

 Magnetic moment (or spin) is a classical “axial vector” (magnetic dipole)
generated by an electric current.
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Ordered spins in a crystalline lattice

e Exchange interactions exists between ions with spin that can stabilize long range magnetic order
— Direct, superexchange, double exchange, RKKY, dipolar

ogosu JIISS IS SSS o0
) 20 0 T
pre-p oo Sl SIS o

Paramagnetic state Ferromagnetic state Antiferromagnetic state Ferrimagnetic state
<§>=0 <§>+0 <§>+#0 <§>+#0
z £ z | |
5 2 3 Different magnetic atoms or
_ . a g Oy > 0 S By < 0 different oxidation states for
Curie-Weiss: 2 2 2 the same atom) _
X=C/(T-Bcw) § o Teus 2 - Non-zero total magnetic
2 = ure = moment
c = c
[sT4] =14 [=T4]
(42} 1] T
= s 2 T
Temperature Temperature emperature

e Time-reversalis a valid symmetry operator for paramagnetic phase, but is broken in the ordered phase
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Overview

Aim: Introduce concepts and tools to describe and determine magnetic structures

* Basic description of magnetic structures and propagation vector

« What are the ways to describe magnetic structures properly and to access the
underlying physicse

- Representational analysis
- Magnetic space groups (Shubnikov groups)

HIGH FLUX
ISOTOPE
REACTOR

SPALLATION
NEUTRON : . ) . .
SOURCE Magnetic Symmetry: an overview of Representational Analysis and Magnetic Space groups

%OAK RIDGE

National Laboratory




Magnetic structures

* Magnetic structures can be simple or complex (frustrated, spin density wave, sine wave,
canonical, helical, Skyrmion, etc).

« What is a magnetic structure:

— Description of whatever magnetic atom of whatever unit cell’s direction and
magnitude of the magnetic moment.

— The order has some translational symmetry (the moments in different unit cells are
related in a periodic way).

- Long correlation length

« What is NOT a magnetic structure:
— An arbitrary set of arrows in a box that doesn’t have any symmetry constraints

— Problem arose from lack of standardization and software limitations (think about
crystallography success)

- Simple rules exist, complete rules now becoming accessible and mainstream
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Magnetic structures e
Magnetic structures and their determination using group theory

o Lots of types (and mixtures of these types). A. Wills

28
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Magnetic structures o1

Magnetic structures and their determination using group theory

e Lots of types (and mixtures of these types). A. Wills
=
These can all be described using the propagation @@
$ % vector formalism. &
oo
A e . . o
This forms the basis for extension to a complete and oo
~_ Tobust symmetry description and categorization =D

~ G

i) elliptical helix
~w § PP

d} triangular e) canted flumbrella
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Magnetic propagation vector: k-vector
* Magnetic and crystallographic unit cells are not necessarily the same size.

« Convenient to infroduce a propagation vector (k-vector):
Describes the relation between the nuclear and magnetic unit cells

« Aim: Can state just the spins in the 0™ crystallographic unit cell and the k-vector describes how the spins
are related in all other unit cells.

« k-vector directly observable with neutron scattering:

- They are shiffed from the positions of nuclear peaks () by the k-vector value, i.e Qo= T + K
- k-vector can be commensurate (e.g. 1/4) orincommensurate (e.g. 1/13)
— Can have multiple k-vectors

k=(0,0), FM k=(0,0), AFM k=(2,0), AFM k=(",0), AFM

=) =0 =0) o | o= @-

a

| . =0)> | =0) =0)

Crystal unit cell

« -
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= P
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Magnetic unit cell
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General magnetic structure description with k-vectors

« Can state only the spins in the 0™ crystallographic unit cell and the k-vector Correlation of the spin m, on

describes how the spins are related in all other unit cells. atom j within unit cell | to mg in
the 0t unit cell translated by R

» For all magnetic ordering this can be expressed in the Fourier series:

m :zk Sk e-2'ITik.R
] ]

m=%, S [cos(-2TTK.R)+isin(-211k.R)]

- m is the magnetic moment at the atomic site j in some unit cell that is
related to the 0 cell (G,) by a translation R. . X, ¥, 2, atomic positions
Iy, 15, 15 : integers

- §; (Basis vector) is the magnetic moment in the 0™ cell = a, b, ¢ : unit cell parameters
.e. it describes the projection of the moments (aka W)).

- ks the propagation vector

- Formany cases the sum of several basis vectors is required $=1,C S,
(finding this is goal of representational analysis, see later)

* mjisreal, but expression includes i, need the condition:  §,;=§,*

HIGH FLUX
ISOTOPE
REACTOR

¥ OAK RIDGE SPALLATION

National Laboratory

SOURCE Magnetic Symmetry: an overview of Representational Analysis and Magnetic Space groups




General magnetic structure description

* A magnetic structure is fully described by:
— k-vector (either commensurate or incommensurate)

- Basis vectors §,;: Fourier components for each magnetic atom j and k-vector
(S is a complex vector, 6 components)

- DyMnGe,: See previous Magnetic workshop tutorials for this example.
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Examples of using the k-vector formulism: m= §; e=mkR

Simplest case of k =(0,0,0) =0

Orientation of the magnetic moments in any cell of the crystal are identical to the 0™ cell
(i.,e. magnetic unit cell = crystallographic unit cell)

[ ]
i

C
-

But does NOT say what the magnetic structure is.
- k=0 can be ferromagnetic, antiferromagnetic, S S

&
&
&
a2

i
?

ferrimagnetic, collinear or non-collinear. L:‘ 1 I
- Only for Bravais lattices (single atom per primitive  _g» ———» | '
cell) does it mean it is FM forromagnet k=0 reciprocal space
. tif { = = i
~ In all other cases need the Basis vectors (§)) to TS k=0 magnefic paaks

describe magnetic structure
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Examples of using the k-vector formulism: m= §; e=mkR

Consider half a reciprocal lattice: k=00

Basis vector in the 0™ cellis $=(010), i.e. spins along b

Each plane corresponds to a lattice translation R=001

This is an example of a real Basis vector - sine component is zero.

AN M= Ske2mkR = (010) expl-21i(00%).(004)] = (010)

= M= Sfe?meR=(010) exp[-21i(00%%).(003)

c A m;= Sk e-2mkR = (010) exp[-21i(00%2).(002)]
,J—»b

a F\ m;= Sk e2mkR = (010) exp[-21Ti(00%2).(001)]

/\' m;= S} e?mk-R = (010) exp[-21i(00%2).(000)
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Examples of using the k-vector formulism: m= §; e=mkR

e kbetween O and 4% gives a non-zero sine component and S is real

« This makes m, complex, but it needs to be real m.=%, S [cos(-2TTK.R)+isin(-211k.R)]

« Need to consider both k and -k propagation vectors
(= forincommensurate need at least 2 arms of the star — see later)

m.:zk S_k e-Z'ITik.R — S_k e-ZTTik.R + S_—k e—2'|Ti(—k)_R
J J j i

mJ — Sjk e-ZTI'ik.R + (Sjk)* e-Z'ITi(-k).R Slnce s-kj — SKJ*

Expansion of the exponentials leads to: —_——
m;=2ReS} [cos(-2Tk.R)] + 2ImS}* [sin(-2Tk.R)]

Second term is zero since S is readl

- Amplitude modulated sine structure (spin density wave)

e e

b sine
ar
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Examples of using the k-vector formulism: m=

e Siscomplex and k is ihncommensurate

» This makes m; complex, but it needs to be real
* Again consider k and -k vectors

m; = 2Re(S}) [cos(-2Tk.R)] + 2Im(S}) [sin(-2Tk.R)]
 Now the second ferm is non-zero

o If Re(S) # Im(S) this describes an ellipse
- elliptical helix structure

e IfRe(S) =
This describes a C|rcle
- circular helix structure
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Multi-k structures: the Skyrmion lattice

Skyrmion lattice is an example of a multi-k incommensurate magnetic structure

« Latfice of clockwise magnetic whirlpools | ‘ ' |
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k-vectors with values >1/2

» k-vectors are referred to the reciprocal basis of the
conventional direct cell

* Most cases magnetic unit cell is the same or larger than the

crystal unit cell T'p

e Centered cells > can have k>0.5 e.g. (k=010)

« BCCis an example (conventional (cubic) unit cell contains
two primitive unit cells)

e Translational vectors have fractional components

The index jruns on the atoms contained in a primitive cell

t;o-mo-»

R, =R, +r,=/a+lb+/lc+xa+yb+z.ec
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Star of the propagation vector

m :zk Sk e-Z'ITik.R
| |

e Three possibilities for propagation vector in real materials:
- Single k-vector (most common)

— Multi-k: More than one k-vector of the star are involved (keep sum in
expression)

- One k-vector and its harmonics, k, k/2,... (sum over harmonics of k)
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Star of the propagation vector

« Consider effects of the symmetry (g) of the crystal space group (G,) on the k-vector.
- l.e. apply a symmetry element g with various rotations (h) and translations (1), i.e. g={h, 1}

* The rotation operation h will act on the k-vector: k’=kh
- k'=k (unchanged) or k'#k (inequivalent propagation vector produced)

* The set of non-equivalent k vectors obtained by apply the rotational symmetry operations gives
the “star of k™ k; vectors are called

the arms of the star
 {k} = {hki.hokyhsky,...} =

« The number of arms (/) of the staris equal to the number of symmetry elements of G, (cosets)

« First coset fermed the “Little group G, "
- leaves k invariant or equal to an equivalent k-vector
- G is always a subgroup of G,
- Important for Representational Analysis approach
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Star of the propagation vector: Little Group (G)

k-vector reduces the space group symmetry from G, to G,

The number of elements of the little group G, depend on the k-vector

e.g. consider space group 227

— Ifk=(000) 2> 48 elementsin G,
- Ifk=(200) = 8 elementsin G,
— Itk=(2 2 '2) =2 12 elementsin G,

This is because different planes, lines and points will correspond to different
symmetries and so result in different a G,.

OOOOOOOOOOOOO . . . . .
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Star of the propagation vector

« Star of the propagation vector k=(x 0 0) in the tetragonal
space group 14/mmm (point group D'7,,)

e The arms of the star are:

- k,=(x00) )

- k2: (O _X O) 3

_ k3=(‘X 0) O) Ko < / k.

- k=0 x0) "

1
C*
C]*J— o
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Domains

« Transition from paramagnet to ordered magnetic state lowers symmetry.
- Can create domains

« If G, is paramagnetic group of order n, and G,, is ordered magnefic space group of order n,,
=2 np/Ny, number of domains

« 4 types of domains
— Time-reversed domains: 180° (1) domains = loss of time-reversal symmetry
— Orientation domains: s-domains = loss of rotation symmetry
— Configuration domains: k-domains - loss of franslational symmetry
— Chiral domains = loss of inversion symmetry (-1)
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180° (11) domains = loss of time-reversal symmetry

« Moment direction reversed between domains

Magnetic Symmetry: an overview of Representational Analysis and Magnetic Space groups



s-domains =2 loss of rotation symmetry

« “Orientation domains” caused by lowering of symmetry from paramagnetic to magnetic
phase.

e Loss of rotational invariance.

» No loss of franslational symmetry.
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k-domains = loss of translational symmetry

e “Configurational domains”

e Each vector in the star generates a different (equivalent) configuration domain.
- e.g. k,=(1/2,0,0), k,=(0,1/2,0), k5=(0,0,1/2)

« Each domain gives a separate set of magnetic reflections

e

Magnetic Symmetry: an overview of Representational Analysis and Magnetic Space groups




k-domain in MnO

J. Phys. IV France 11 (2001) Pro-133
© EDP Sciences, Les Ulis

Magnetic structures and their determination using group theory
A. Wills

Figure 4: a) The magnetic motif of MnO made up of ferromagnetic planes of moments that
are coupled antiferromagnetically. b) The star of k in reciprocal space is made up of the four
propagation vectors related by the rotation elements of the space group Go: k; = (%, : %) ko =

—

‘([%, z, %) g = (5,1 %) and k,; = (%, 3 %) Domains are found that correspond to each of these
~vectors.
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Chiral domains = loss of inversion symmetry

 Two domains of opposite handedness generated by loss of inversion symmetry.

e Paramagnetic space group is centrosymmetric and magnetic space group is
noft.

"\ 17/ <N\ /e —

N\ e X\t —
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Constrain and go beyond the simple k-vector formalism

K-vector formulism is a simple and intuition way to arrive at any magnetic structure.

But things can get complicated fast: Lots of variables and limited information from experiment

Want a systematic way to determine and describe magnetic structures, i.e. a better way

Symmetry analysis goes beyond trial and error analysis

- Neumann'’s principle: If a crystal is invariant under a symmetry operation, its physical properties
must also be invariant under the same operation

- Symmetry dictates what is allowed and what is forbidden/constrained - gives correct/physical
magnetic structures

— Unless there is a phase transition, what is forbidden/constrained by symmetry is “protected”, i.e.
it will remain forbidden unless the symmetry changes.

— Easier
— Software available 1o use

“It 1s only slightly overstating the case to say that physics 1s the study of symmetry”

P. W. Anderson

Science, New Series, Vol. 177, No. 4047 (Aug. 4, 1972), 393-396.
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Overview

Aim: Infroduce concepts and tools to describe and determine magnetic structures

e Basic description of magnetic structures and propagation vector

« What are the ways to describe magnetic structures properly and to access the
underlying physics?

— Representational analysis
— Magnetic space groups (Shubnikov groups)
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What are the ways to describe magnetic structurese

Two main approaches

— Historically competing

— Until very recently Representational analysis ‘easier” to apply to experimental data

— Since 2010 magnetic space group approach standardized and now equally accessible
— Current/future: combined approach for full insights with lots of powerful software

Representational analysis (Irreps) Magnetic (Shubnikov) Space Groups
- Most general approach - Extension of crystallographic space

— Finds basis vectors in k-vector approach groups to include spin (fime-reversal)

_ Equally applicable to simple —~ I\/\Gin’roir)s symmetry of mogne’ric/npn—
commensurate and complex magnetic atoms so can provide insights

iIncommensurate magnetism - Incommensuratfe only recently added
- Can give direct information on through supersymmetry description

Hamilfonian

- Assumes knowledge of non-magnetic
crystal stfructure

%QAK RIDGE

ional Laboratory
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Representational analysis is, first of all, a tool for finding magnetic structures

Acta Cryst. (1968). A24, 217

%

Representation Analysis of Magnetic Structures

By E.F.BERTAUT

Laboratoire d’Electrostatique et de Physique du Métal,C.N. R.S., B.P. 319 et
Laboratoire de Diffraction Neutronique, C.E.N.G., B.P. 269, Grenoble 38, France

(Received 20 July 1967)

In the analysis of spin structures a ‘natural’ point of view looks for the set of symmetry operations
which leave the magnetic structure invariant and has led to the development of magnetic or Shubnikov
groups. A second point of view presented here simply asks for the transformation properties of a
magnetic structure under the classical symmetry operations of the 230 conventional space groups and
allows one to assign irreducible representations of the actual space group to all known magnetic
structures. The superiority of representation theory over symmetry invariance under Shubnikov groups
is already demonstrated by the fact proven here that the only invariant magnetic structures describable
by magnetic groups belong to real one-dimensional representations of the 230 space groups. Representa-
tion theory on the other hand is richer because the number of representations is infinite, i.e. it can deal
not only with magnetic structures belonging to one-dimensional real representations, but also with
those belonging to one-dimensional complex and even to two-dimensional and three-dimensional
representations associated with any k vector in or on the first Brillouin zone.

We generate from the transformation matrices of the spins a representation I" of the space group
which is reducible. We find the basis vectors of the irreducible representations contained in I

The basis vectors are linear combinations of the spins and describe the structure. The method is
first applied to the k=0 case where magnetic and chemical cells are identical and then extended to the
case where magnetic and chemical cells are different (k #0) with special emphasis on k vectors lying
on the surface of the first Brillouin zone in non-symmorphic space groups. As a specific example we
consider several methods of finding the two-dimensional irreducible representations and its basis vectors
associated with k=4 b,=[010] in space group Pbnm (DL5).

xr. oty . .

JOURNAL DE PHYSIQUE

Introduction. — Representation analysis
magnetic structure is not only a) labelling or classi-
fying a structure, but consists mainly of b) the search
for the structure before it is known and of ¢) the dis-

Collogue C 1, supplément au n° 2-3, Tome 32, Février-Mars 1971, page C 1 - 462

MAGNETIC STRUCTURE ANALYSIS AND GROUP THEORY

E. F. BERTAUT

C. N. R. 8. and C. E. N.-G., rue des Martyrs, Grenoble

of a

cussion of the interactions which might explain the

final structure model. Professor Opechowski has not
gvaluated the merits of representation analysis for:

b) and ¢). Thus I shall answer his criticism at the end’

of my lecture.

C1-470

matical difficulties when one is not willing to impose
cyclic boundary conditions ». As far as I understand,
cyclic boundary conditions are the mathematical
trick to handle infinite groups (translation and space
groups) on the same footing as finite groups and have
led to the success of space group theory. I am not
willing to abandon these achievements if there is
no better theory available.

As far as usefulness is concerned T still think that
C2 gives more immediate information than C1'.
There is no difficulty in using both descriptions jointly
and, as a common practice, I indicate the Shubnikov
group (except P 1) in my writings,

Conclusion. — Representation analysis is, first of
all, a tool for finding magnetic structures. The des-
cription of a magnetic structure by basis vectors
of irreducible representations is certainly useful.
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Finally the construction of an effective spin hamil-

E. F. BERTAUT

tonian using a/l the symmetry elements of the irre-
ducible representation becomes possible. Of course,
physicists did not wait for the theory presented here
to build their hamiltonian in the helimagnetic case.
But when minimizing the isotropic part of the hamil-
tonian, say J, cos nl + J, cos 2 7/ in the case of say
the dysprosium or AuMn,-helix, they may have
got some feeling from this lecture that their hamil-
tonian is invariant under the wave vector group
Gy (= P63 mc) with k = [00 ] and that the helical
spin configuration may belong to a two-dimensional
representation of Gy [10].

Thus we reach this final conclusion. When the
spin arrangement belongs to an irreducible represen-
tation of order higher than one or to a complex repre-
sentation, the effective spin hamiltonian has a symme-
try higher than the symmetry (Shubnikov-symmetry)
which leaves the magnetic structure invariant.
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Representation analysis: further development by lzyumov

Neutron-diffraction studies of magnetic structures of
crystals

Yu. A. Izyumov

Institute of Metal Physics of the Ural Scientific Center of the Academy of Sciences of the USSR, Sverdlovsk
Usp. Fiz. Nauk 131, 387422 (July 1980}

The contemporary state of neutron diffraction of magnetic structures is analyzed from the standpoint of the
theory of symmetry of crystals. It is shown that the varied and numerous structures determined in neutron-
diffraction studies can be classified and described by the theory of representations of space groups of crystals.
This approach is based on expanding the spin density of the crystal in terms of basis functions of the

irreducible representations of its space group. Thus the magnetic structure can be specified by the mixing

coefficients of the basis functions. Analysis of a large number of different kinds of magnetic structures shows
that they arise in the overwhelming majority of cases, in accord with Landau’s hypothesis, from a phase

transition that follows a single irreducible representation. This means that the number of parameters that fully
fix the magnetic structure of an arbitrarily complex crystal is small and equal to the dimensionality of the
responsible irreducible representation, This offers great advantages in employing the symmetry approach in
deciphering neutron-diffraction pattierns of a crystal under study. This is because it reduces the problem of
determining a large number of magnetic-moment vectors of the crystal to finding a small number of mixing
coefficients. This review presents the fundamentals of such a symmetry analysis of magnetic structures and

0. methods of detclmmmg thl:m from ncutmn-dlffrmmn data. Thc described method, whmh is Glﬂrsel}' allied to
Nati l‘l"L‘";')U\t-(:Ly‘ ‘ ISOTOPE NEUTRON
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Properties of a Group (G)

* A group contains a set of elements A,B,C... that make up the group that satisfy the
requirements:

— Closure: Product of two elements of a group is also a member of the group AB € G
— Associativity: A(BC)=(AB)C for all ABC € G

— ldentity (E): There is an identity element (E) safisfying EA=AE=A it A€ G

— Inverse: There must be an inverse of each element. AA'=ATA=E

o Order of a group (h) is the number of elements in the group (can be finite or infinite).

Magnetic Symmetry: an overview of Representational Analysis and Magnetic Space groups



Representational analysis

* Arepresentation of any group G is a mapping of the elements of Gto asetofn x n
matrices, [={(g) | g € G}, which have the same group structure under matrix
mulfiplication.

- e.g. [(9192)=T(g) I'(g,)

« The number n is the dimension of the abstract representation space in which the
matrices are embedded and is called the dimension of the representation.

« Two matrices are equivalent if there is a similarity fransformation U (change of basis)
between them common to all matrices: ' (g)= Ul (g)U

* A group can have an infinite number of representations of arbitrary dimension.

 Can find an appropriate similarity transformation U to reduce the representation to
block-diagonal form.

— Irreducible Representation (irreps) are those representations that cannot be reduced
further.

_ Vo 1 2 m If the dimensions of representations 'V are the smallest
I'= Z ™ =ml" emnl” & ... &nml possible, the sub-matrices for the different group
®v elements are the irreps

OOOOOOOOOOOOO . . . . .
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Representational analysis P=S 0l =mT @2 @ . @ ™

DV

o Consider a group G={a,b,c....} that can have the representation = {l'(a), I'(b), I'(c).....}

e Find a similarity fransformation U that converts all matrices to the same block-diagonal form
- obtain an equivalent representation that can be decomposed: T(g)=Ul(g)U"!

4, A, 0 o o0 0 o0
4, 4,00 0 0 0 0
o 0B, 0o o o Maftrices A(g),B(g) and C(g) are all
()= 10 oo 8]0 o o =A(g)+t2B(g)+C(g) representations of the group G.
o 0o o o0 |c, ¢, C,
o 0 o0 o0 |c, C, C,
0 0 0 0 |c, C, C,
. r={A(a),A(b),A(c),...}
Ireducible . T2={B(a).B(b).B(c),...}
representations:

#={C(a),C(b).C(c),...}

OOOOOOOOOOOOO . . . . .
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Why Representation analysise

Key point is that IRREDUCIBLE representations cannot be separated into smaller pieces.

Offer the building blocks to construct all possible magnetic structures.

A general approach to parameterize any “distortion” lattice strain
— Molecular vibrations

— Hybridized and molecular orbitals
— Crystal-field splitting

- Crystal band structure

Irreps provide a symmetry-based coordinate system (parameter set) for describing

deviations from symmetry.
Y R magnetic displacive occupational
X oo 2 -
© O S\ | ’
" . o 0% o
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Why Representation analysise

+ Based on Group theory: developed to determine the coupling and orientation of m,
« Gefseverallreps, I,.4 = L,n[,, that describe all possible magnefic structures. Landau simplifies.
 Equally applicable to commensurate/incommensurate.

 Reduces the number of possible magnetic structures and number of parameters needed in the
refinement of the structure.
- A systematic way of finding all possible magnetic structures

- Often complex and trivial spin orders can be determined with the same effort.

* The irreps of a system are intimately related to the eigenvectors of its Hamiltonian. Using
representation theory, to define how a system changes, indirectly probes the energy terms driving
a phase transition.
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Using Representational analysis
« Determine k-vector, crystallographic space group (G,) and positions of the magnetic atoms.

« Consider the little group Gy.

« Consider the effect of symmetry operations of G, on the magnetic atoms, i.e., the change of the
position and moment direction. The magnetic representation of the overall effect is given by the

direct product (I',q4):
V: change of roation for each atom
r :\7 x (axial-vector representation,)

[erm: Change of position for each atom
(permutation representation)

« Decompose the magnetic representation into the sum of irreps of G,.
(i.e block diagonalize the maftrix as much as possible): I, = Ny Ty +ny T +

« Foreachirrep I, appearing in the decomposition of T, find its basis vectors S,', S,2, ...
- If it contains an | dimensional irrep, T, n; times, there are n; x | basis vectors.

« The set of basis vectors for each irrep describes allowed magnetic structures.
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Basis vectors

« Consider the decomposition of the magnetic representation: I, = 11,11 + 11,12
Superscript represents the order of the irreducible representation and the subscript is its index or label.

-2 [hag CONtains ireducible represenfation number 1 (which is of order 1) once, and irreducible
representation number 2 (which is of order 2) once. This means that ', ,, contains one basis vector
associated with I', and two associated with [,

Basis vectors: Calculation of the basis

: . vectors is done using the projection
Recall from earlier for m.=5 [ Sk ¥-2mik.R operator fechnique

magnetic structure: . . > take a test function and project from
it the part that transforms according to

\_/
\ each of the irreps.

k: propagating vector
v.reference toirrep I,

n:index from 1 to n, Iqq= 2, NI,
A= index running from 1 ?o dim(r,)

Mixing coefficient: the free parameters that are varied to determine the magnetic structure
(they correspond to the order parameters in Landau theory)
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Simplification of problem: Landau Theory

 Landau theory: In a second order phase fransition, a single symmeiry
mode is involved

- Only need one IR to describe the magnetic structure, all other irreps
cancel

e For 1 atomic site can have lots of IRs. Can use this to greatly simplify -\ B Y
analysis. Lev. LANDAU

Nobel Prize 1962 "for
his pioneering theories
for condensed matter,

« Also helps with complex cases of more than one atomic site, e.g. A and B~ especially liquid helium®
e Assume representational analysis gives the following irreps:

- Site AiT g = 11 + 0l + 115+ 1T,

— Site B: T,qq = 11 + 17, + 03 + 0T,

If both sites order together and this is second order
- Magnetic structure described by only T,
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Using Representation Analysis

Determining the basis vectors of irreps of space-groups is a well-known but difficult
mathematical problem

Propagation k-vector
e However, numerous tools are available: | (use neutron/x-ray

. . scattering) List of irreps with
- Baslreps (included with Fullprof) + 6asis vectors 16
- SARAN Crystallographic Software %rggﬁg}e.collowed
R - space group (G) in |
Biloao Crystallographic Server non-magnetic phase structures
- JANAZ2006 Position of magnetic
- ISOTROPY afoms o>
C
» |In practice representational analysis is very useful and intuitive
e Avoids incorrect and unphysical magnetic structures Try different
irreps and alter
» Perhaps conceptually more abstract than magnetic space groups. mixing

coefficients
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An example of using Irreps:

TABLE 3 The Basis Vectors (BV) Corresponding to the 16d Sites of the
Pyrochlore Structure, Defined by Space Group Fd3m and Propagation
Vector k = (0,0,0)

IR BV
I, ¥
I's V2
V3
I Va
Vs
Ve
Iy V7
Ve
Va
Vio
i
V12

Atom 1
(1/2,1/2,1/2)

{(1,1,1)
{1,-1,0)
(1,1,=-2)
0,-1,1)
{1,0,—1)
(—1,1,00
{(1,1,0
(0,0,1)
(0,1,1)
(1,0,0)
(1,0,1)
(0,1,0)

Atom 2
(1/2,1/4,1/4)

=1 =]
(1,1,
(1,-1,2)
(0,1,-1)
(-1,0,-1)
{(1,1,00
(—1,1,0)
(0,0,1)
0,-1,-1)
(1,0,0)
(—1,0,1)
(0,1,0)

IR, irreducible representation; BY, basis vectors,
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Atom 3

(1/4,1/2,1/4)

(-1,1,-1)
(-1,-1,0)
(=1,1,2)
0,1,1)
(—1,0,1)
(—1,-1,0)
(1,-1,0
(0,0,1)
0,-1,1)
(1,0,00
(—1,0,—-1)
(0,1,0)

Atom 4

(1/4,1/4,1/2)

Pyrochlores

Magnetic representation of the
crystallographic A3* site in A,B,O:

Mag(A) = TF50 + 152 + 11,081 + 2r,(6)

e AL KK

{0,—1,-1)
(1,0,1)
{1,-1,0
(—-1,-1,0
(0,0,1)
(0,1,-1)
(1,0,0)
(1,0,—1)
(0,1,00

Neutron Scattering - Magnetic and Quantum
Phenomena, Chapter 4 - Magnetic Structures
V. Ovidivdsarea-and. BryanC..GChakoumakos



An example of using lrreps: Pyrochlores

Magnetic representation of the
crystallographic A3* site in A,B,O:

TABLE 3 The Basis Vectors (BV) Corresponding to the 16d Sites of the
Pyrochlore Structure, Defined by Space Group Fd3m and Propagation

Vector k = (0,0,0)

Atom 1 Atom 2 Atom 3 Atom 4 rmog (A) =1 r3(]) + ] r5(2) + ] I-7(3) + 2|‘9(6)
IR BV  (1/2,1/2,1/2)  (1/2,1/4,1/4)  (1/4,1/2,1/4)  (1/4,1/4,1/2) 5d pyrochlores - Weyl fermions
I, ¥ (1,1,1) (1,—-1,-1) (-1,1,-1) (—1,-1,1)
I'; ¥a (1,-1,0) (1,1,0) (-1,-1,0) (—1,1,0) ﬁ
V3 {1,1,=2) (1,-1,2) (-1,1,2) (-1,-1,-2)
I'z ¥y (0,-1,1) 0,1,-1) 0,1,1) (0,-1,-1) M5 3 r7 wd r7 y5 r7 @b
Vs {1,0,—1) (—1,0,—1) (—1,0,1) (1,0,1)
Ve (—1,1,0) (1,1,0) (-1,-1,0) (1,-1,0) o A %’ h‘
ry Ws (1,1,0) (—1,1,0) (1,-1,0) (-1,-1,0) ‘L&ﬁ
Ve (0,0,1) (0,0,1) (0,0,1) (0,0,1) S o7 ro wa ro w9 ro wio ro w11 ro w12
Va (0,1,1) (0,-1,-1) 0,-1,1) 0,1,-1)
V1o {1,0,0) {1,0,00 (1,0,00 (1,0,00
Vi (1,0,1) (-1,0,1) (-1,0,-1) (1,0,-1)
Y2 (0,1,0) {0,1,0) (0,1,00 (0,1,

IR, irreducible representation; BY, basis vectors,
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An example of using lrreps: Pyrochlores

Magnetic representation of the
crystallographic A3* site in A,B,O:

TABLE 3 The Basis Vectors (BV) Corresponding to the 16d Sites of the
Pyrochlore Structure, Defined by Space Group Fd3m and Propagation

Vector k = (0,0,0)

Atom 1 Atom 2 Atom 3 Atom 4 mog( ) - ]r3“) + ]r5(2) + ”-7(3) + 2|‘9(6)
IR BV (1/2,1/2,1/2)  (1/2,1/4,1/4)  (1/4,1/2,1/4)  (1/4,1/4,1/2)
I, V1 (1,1,1) (1,—-1,-1) (-1,1,-1) (-1,-1,1)
I's Vs (1,-1,0) (1,1,0) (—1,—1,0) (—1,1,0) ﬁ
¥ (1,1,-2) (1,-1,2) (-1,1,2) (-1,-1,=2)
I'z ¥y (0,-1,1) 0,1,-1) 0,1,1) (0,-1,-1) r7 wd r7 y5 r7 @b
Vs (1,0,—1) (—1,0,—1) (—1,0,1) (1,0,1)
Ve (—1,1,0) (1,1,0) (—1,—1,0) (1,—-1,0) ﬁ ﬁ
r, Vs (1,1,0) (—1,1,0) (1,-1,0) (—1,-1,0)
¥s  (0,01) 0,0,1) 0,0,1) 0,0,1) rowio oW vz
Vo (0,1,1) 0,-1,-1) 0,-1,1) 0,1,-1)
V1o {1,0,0) {1,0,00 (1,0,0) (1,0,00
Vi1 (1,0,1) (-1,0,1) (-1,0,-1) (1,0,—-1)
Yo (0,1,0) (0,1,0) (0,1,0) (0,1,0)

IR, irreducible representation; BY, basis vectors,
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What are the ways to describe magnetic structurese

« TWO main approaches
— Historically competing
— Until very recently Representational analysis ‘easier” to apply to experimental data
— Since 2010 magnetic space group approach standardized and now equally accessible
— Current/future: combined approach for full insights with lots of powerful software

Representational analysis (Irreps) Magnetic (Shubnikov) Space Groups
- Most general approach - Extension of crystallographic space

— Finds basis vectors in k-vector approach groups to include spin (fime-reversal)

_ Equally applicable to simple —~ I\/\Gin’roir)s symmetry of mogne’ric/npn—
commensurate and complex magnetic atoms so can provide insights

iIncommensurate magnetism - Incommensuratfe only recently added
- Can give direct information on through supersymmetry description

Hamilfonian

- Assumes knowledge of non-magnetic
crystal stfructure

%QAK RIDGE

ional Laboratory
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Alexey Vasilyevich Shubnikov 1887-1970

Magnetic space groups (Shubnikov groups)

« Natural extension of the crystallographic space group description.

e But only recently became accessible to the wider community.

1929: Heesch, intfroduces the antiidentity operation properties: u2 = 1, ut = tu for all teT
- aka time reversal group = {1,1'} (Z. Krist. 71, 95)

1945: Shubnikov re-infroduces concept of bi-colour point groups

1951: Shubnikov describes and illustrates all of the bicolor point groups (= Shubnikov groups)
1955: Belov, Neronova, Smirnova (BNS) - first complete listing of the Shubnikov groups (Sov. Phys. Crys 1, 487-488)
1957: Zamorzaeyv, group theoretical derivation of Shubnikov groups (Kristallografiya2, 15 (Sov. Phys. Cryst., 3, 401))

1965: Opechowski and Guccione (OG), first complete derivation and enumeration of the Shubnikov groups

2001: Litvin, corrected Opechowski-Guccione symbols (Acta Cryst. A57, 729-730)

2010: Magnetic Space Groups on computer programs (Stokes and Campbell, BYU)

Future: combine magnetic space group and representational analysis approaches for complete insights
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Magnetic space groups (Shubnikov groups)

Use description from crystallography

230 Space groups for crystals describe positions of atoms.

Magnetic structures 2 add magnetic spin to atom positions .... spins are axial vectors.

Need spin reversal operator 1’ (aka antisymmetry, antiidentiy, or fime-reversal)
— Defines the current loop type symmetry of an axial vector
- Can be combined with any conventional operator h to form a new primed operator h’

‘I 1
Time reversal = spin reversal N
(changes the sense of the current)

The spin reversal operator 1’ flips the magnetic moment
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Magnetic space groups (Shubnikov groups)

Use description from crystallography

230 Space groups for crystals describe positions of atoms.

Magnetic structures - add magnetic spin to atom positions .... spins are axial vectors.

Need spin reversal operator 1’ (aka antisymmetry, antiidentiy, or fime-reversal)
— Defines the current loop type symmetry of an axial vector
- Can be combined with any conventional operator h to form a new primed operator h’

mirror mirror anti-mirror

m ’
Symmetry Operations on: + ™ + m

- Polar vector (e.g dipole)
[Parity even, time-odd]

- Axial vector (magnetic spin)
[Parity odd, time even] m m

| o= | e o |

SOURCE Magnetic Symmetry: an overview pf Representational Analysis and Magnetic Space groups
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Magnetic space groups (Shubnikov groups)

Use description from crystallography

230 Space groups for crystals describe positions of atoms.

Magnetic structures - add magnetic spin to atom positions .... spins are axial vectors.

Need spin reversal operator 1’ (aka antisymmetry, antiidentiy, or fime-reversal)
— Defines the current loop type symmetry of an axial vector
- Can be combined with any conventional operator h to form a new primed operator h’

Symmetry Operations on: ] .
Inversion (-1) Inversion (-1)

- Polar vector (e.g dipole)
[Parity even, time-odd] + -
- Axial vector (magnetic spin) t O o
[Parity odd, time even] i
=

%OAK RIDGE

National Laboratory
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Bullding the magnetic space groups (Shubnikov groups)

e By associating the 1’ operator with a color change (black to white or black to red) the magnetic
symmetry theory was termed black-white symmetry.

M The original 230 space groups are included as colorless groups and keep their standard labels
« A further 230 groups are created by adding the 1’ operator as an extra symmetry operation
- e.g. Pmmm’
— These correspond to paramagnetic states and are termed grey (each magnetic site is both
black and white = grey)
 The remaining 1191 magnetic space groups are created by combining the 1’ operator with one or
more of the symmetry operation in each of the 230 crystallographic space groups

- e.g. Pm’mm where the mirror plane perpendicular to a is now an anti-mirror and the other two
are unchanged.

- Combining all possibilities leads to 1651 magnetic space groups
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Building the magnetic space groups

Type-I: M=G 230
« 230 crystallographic space groups No primes

: , (single color)
- add spin-reversal operator 1
Type-ll: M=G+G 1’ 230

« 1651 Magnetic (Shubnikov) Space Groups all primed and unprimed
(paramagnetic or gray groups)

Type-lll (3a): M=D+(G-D)’ 674
half are primed
(black-white groups)
Groups of the “first kind”
D is franslationgleiche

For each non-magnetic space group (G), we can D franslafion is the same as G

construct multiple magnetic space groups (M). Type-IV (3b): M=D+(G-D)’ 517
Some of them involve a non-magnetic subgroup (D) half are primed
congaing half the elements of G (black-white groups)

Groups of the “second kind”
D is klassengleiche
D contains antitranslations leading to
primitive magnetic cells larger than
primitive crystal cells

Total magnetic space groups 1651
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Building the magnetic space groups

Type-I: M=G 230
Example based on space group P2/m no primes
Type-I (single color)
Fedorov group Type-ll: M=G+G 1’ 230
10.42 P2/m Type-ll . ;}’l}’l‘?-lf | all primed and unprimed
X,V,Z gray group ack/white lattice i
(_(x’ 5 _)Z) 10.43 P21’ 1045 P2 m (paramagnetic or gray groups)
(—x, -y, —2) (x,y,7) (x,v,2) Type-lll (3a): M=D+(G-D)’ 674
(x,—y,2) (—x,y,—2) (—x,y,—Z2) half are primed
(=%, =y, —2) (—x,—y,—2) (black-white groups)
Pttt (x,.=y,2) (x,=y,2) Groups of the “first kind”
10.44 P2’ /m (x.y,2) (,y+1/2,2) D is translationgleiche
(=%, —2) (=x,y +1/2,-2) D translation is the same as G
(x,y,2) (—x,—y,—z) (=x,—y+1/2,—2)
(—x,y,~2)' (x,—y,7)’ (t.—y +1/2.2) Type-IV (3b): M=D+(G-D)’ 517
(—x,—y,—2)’ half are primed
(X, -y,2) (black-white groups)
Groups of the “second kind”
D is klassengleiche
Don’t panic - All the hard work is done by Bilbao D contains anfifransiafions leading fo
Crystallographic Server or ISOTROPY software suite primitive magnetic cells larger than
primitive crystal cells
Total magnetic space groups 1651
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Magnetic space groups

Daniel Litvin provided a full description of all Shubnikov (Magnetic Spcce) groups
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A note on magnetic space group notations

e Two notations for describing magnetic space groups in the literature:
— Belov-Neronova-Smirnova (BNS)
N. V. Belov, N. N. Neronova and T. S. Smirnovaq, Kristallografiya 2, 315 (1957) (English translation:
Sov. Phys. Crystallogr. 2, 311).

—~ Opechoski-Guccione (OG)
W. Opechowski and R. Guccione, Magnetic Symmetry, in Magnetism (G.T. Rado and H. Shull,

eds.), Vol Il A, Ch. 3, 105 Academic Press, New York. (1965).

« |dentical, expect for black-white magnetic space groups (type-IV).
« Recently alist of all 1651 magnetic space groups published.
Similar form to Int. tables for crystallographic groups.
— D. B. Litvin, Acta Cryst. Aé4, 419 (2008). (in OG notation)
— H. Grimmer, Acta Cryst. Aé5, 145 (2009). (reinterpretation for BNS)
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Magnetic Superspace groups

« Recently magnetic space group approach has now been fully generalized to include
iIncommensurate structures beyond the 1651 Shubnikov groups

IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER
J. Phys.: Condens. Matter 24 (2012) 163201 (20pp) doi:10.1088/0953-8984/24/16/163201

TOPICAL REVIEW
Abstract

Ld
Magnetlc Supe rspace gr()ups and Superspace symmelry has been for many years the standard approach for the analysis of

non-magnetic modulated crystals because of its robust and efficient treatment of the structural

Symmetry constraints in incommensurate constraints present in incommensurate phases. For incommensurate magnetic phases, this

generalized symmetry formalism can play a similar role. In this context we review from a

L3
magnetlc phases practical viewpoint the superspace formalism particularized to magnetic incommensurate

phases. We analyse in detail the relation between the description using superspace symmetry
and the representation method. Important general rules on the symmetry of magnetic

J M Perez-Mato', J L Ribeiro’, V Petricek® and M I Aroyo' incommensurate modulations with a single propagation vector are derived. The power and
) ) o o efficiency of the method is illustrated with various examples, including some multiferroic
! Departamento de Fisica de 1a Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del . i - .
Pais Vasco, UPV/EHU. Apartado 644, E-48080 Bilbao, Spain materials. We show that the concept of superspace symmetry provides a simple, efficient and
- Centro de Fisica da Universidade do Minho, P-4710-057 Braga, Portugal systematic way to characterize the symmetry and rationalize the structural and physical
3 Institute of Physics, Academy of Sciences of the Czech Republic v.v.i., Na Slovance 2, CZ-18221 ies of i o - aterials. This is es . i I I
Praha 8, Czech Republic properties of incommensurate magnetic materials. This is especially relevant when the

properties of incommensurate multiferroics are investigated.
E-mail: jm.perez-mato @ ehu.es
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o Supersymmetry should soon be implemented into Fullprof
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Magnetic space groups: all atoms

 The non-magnetic atoms are also often important in the physics

e Magnetic space groups contain all information on crystal and magnetic symmetry of
whole structure

e The same spin arrangement can produce different magnetic space groups (and
different physical properties, e.g. ferroic) depending on the symmetry of the parent

14/mmm, k=(1/2,1/2,0) Cmce, k=(0,0,0) 1-42m, k=(1/2,1/2,0)

Caccm Cm'ca’ Agma2
(c,a-b,a+b; Vs, 3/l (c,ca-b,a+b;0,0,0) (a+b, -a+b,c;1,0,0)

Hypothetical spin

Pr,CuO, Gd,CuO, configuration on a

structure of type GaMnSe,
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Determining magnetic structures

o Collect the bulk data and scattering data
o |dentify the propagation vector (k-vector)

e Explore the symmetry allowed magnetic structures through Representational
analysis and/or magnetic space groups

o Select the best physical meaningful models compatible with ALL data (not just
neutron datq)

e Refine direction and amplitude of the Fourier components (Basis vector)
[Neutron diffraction]

« Now every magnetic structure reported should (must?!) have a magnetic
space group. Just like all crystal siructures reported have a space group.

Magnetic Symmetry: an overview of Representational Analysis and Magnetic Space groups
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Some references on magnetfic symmetry

« Garlea and Chakoumakos, “Magnetic Structures” chapferin Experimental
Methods in the Physical Sciences vol. 48, p.203-290 Academic Press, 2016

« Juan Rodriguez-Carvajala, JacquesVillain, “Magnetic structures” https://doi.org/10.1016/j.crhy.2019.07.004

e J.Rodriguez-Carvajal and F. Bourée, “Symmetry and magnetic structures” DOI: 10.1051/epjconf/20122200010

 J M Perez-Mato, J L Ribeiro, V Petricek and M | Aroyo “Magnetic superspace groups and symmetry constraints
in incommensurate magnetic phases”. doi:10.1088/0953-8984/24/16/163201

e A.Wills, *"Magnetic structures and their determination using group theory” https://doi.org/10.1051/jp4:2001906

e Yurii A lzyumoyv, “Neutron-diffraction studies of magnetic structures of crystals”
https://doi.org/10.1070/PU1980v023n07ABEHO05115

« J.M. Perez-Mato, S.V. Gallego, E.S. Tasci, L. Elcoro, G. de la Flor, and M.I. Aroyo, “Symmetry-Based
Computational Tools for Magnetic Crystallography™ 10.1146/annurev-matsci-070214-021008
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https://doi.org/10.1016/j.crhy.2019.07.004
https://doi.org/10.1051/jp4:2001906
https://doi.org/10.1070/PU1980v023n07ABEH005115
https://www.sciencedirect.com/science/journal/10794042

Conclusion

 Magnetic structures can be described by working through propagation
vector formulism =2 but lack of constraints can lead to problems

e Use of symmertry is extremely powerful and helpful

e Either Representational Analysis or Magnetic Space Groups offer routes to
determine the correct magnetic structure.

— Using both is better and gives most insights into the physics.

o Software is now available to do both routinely.
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