
Irreducible representations 
and the superspace formalism

Branton J. Campbell
Department of Physics & Astronomy

Brigham Young University

Workshop on Symmetry and Superspace Approach 
to Modulated Crystal Structures

Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
23-24 October 2019



Group representations

Representations map group elements onto matrices that 
obey the same multiplication table as the group. 
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𝑅1:            1 → 1           2௫ → 1ത            2௬ → 1           2௭ → 1ത

𝑅2:            1 → 1           2௫ → 1            2௬ → 1ത           2௭ → 1ത

𝑅3:        1 → 1 0
0 1   2௫ → 1ത 0

0 1
  2௬ →

1 0
0 1ത   2௭ → 1ത 0

0 1ത

𝑅3 ൌ 𝑅1 ⊕𝑅2 ൌ 𝑅1 0
0 𝑅2

Reducible representation:

Irreducible representations can’t be separated into smaller pieces!

Irreps are recipes for symmetry breaking!
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Irreducible Representations (irreps)



Irrep recipe for symmetry breaking

𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6 𝑔7 𝑔8

Find the group elements whose matrices leave some vector invariant.

The vector used is called the order parameter direction or OPD.
The resulting symmetry is called an isotropy subgroup of the parent.
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Example: Γହ irrep of space group 𝑃4𝑚𝑚
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Abstract vs Concrete
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Actual subgroups

Basis functions / order parameters
Shear strains along a and b axes.

Invariant/isotropy subgroups
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𝟏 𝟐𝒙 𝟐𝒚 𝟐𝒛
𝚪𝟏 1 1 1 1
𝚪𝟐 1 െ1 െ1 1
𝚪𝟑 1 1 െ1 െ1
𝚪𝟒 1 െ1 1 െ1
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Irrep basis functions

Under the symmetry 
operations of the group, a 
𝑝௬ orbital transforms the 
same way as which irrep?

𝒑𝒛
𝒑𝒙
𝒑𝒚

Parent symmetry = 222



𝟏 𝟐𝒙 𝟐𝒚 𝟐𝒛
𝚪𝟏 1 1 1 1
𝚪𝟐 1 െ1 െ1 1
𝚪𝟑 1 1 െ1 െ1
𝚪𝟒 1 െ1 1 െ1
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Under the symmetry 
operations of the group, a 
𝑑௬௭ orbital transforms the 
same way as which irrep?

𝒅𝒙𝟐ି𝒚𝟐 ,𝒅𝒛𝟐

𝒑𝒛,𝒅𝒙𝒚
𝒑𝒙,𝒅𝒚𝒛
𝒑𝒚,𝒅𝒙𝒛

Irrep basis functions
Parent symmetry = 222



Frobenius discovered irreducible group representations in 1895-97.  
His student Schur discovered their orthogonality and completeness 
relations in 1904-07.  They imply a natural symmetry-based coordinate 
system for parameterizing symmetry loss in any system.  The new 
parameters are amplitudes of irrep basis functions, also called basis 
vectors, symmetry-adapted modes, or just “symmetry modes”.

Wonderful Orthogonality Theorem (WOT)

Issai SchurFerdinand Frobenius



Irreps of the 
symmetry group 
of a sphere: O(3)

Spherical 
harmonics

Irreps of the translational 
group of a periodic signal

Fourier harmonics!

𝑙 ൌ 0

𝑙 ൌ1

𝑙 ൌ 2

𝑙 ൌ 3

Irrep basis functions



Applications of the irrep basis

Molecular vibrations
Hybridized and molecular orbitals
Crystal-field splitting
Electronic-transition selection rules
Crystal band structure
Landau theory
General order parameters in crystals!

occupationaldisplacive
magnetic

lattice strain



Application to materials

occupationaldisplacive

magnetic

lattice strain

rotational

In crystals, symmetry modes provides an orthogonal and complete basis for 
describing the physical order parameters that arise in phase transitions.  Each mode 
yields a pattern of changes that breaks the parent symmetry in a unique way.

ADPs



Crystal irreps defined at specific k-points

(¼,¼,0)

(½,½,0)

(½,0,0)

2 2  2 2

(½,0,0)



½ ½ 0

1 0 0

0 0 1

Complete space-group irreps
at special-𝒌 points

Simultaneous action of entire k star.
8 cases worked manually (1968-1984).

Little-𝒌 group irreps
Faddeyev; Kovalev; Zak, Casher, 
Glück & Gur; Bradley, Cracknell, 
Davies, Miller, Love (1964-1979)

reciprocal space

Tables of Stokes & Hatch (1984, 1987):
all 4777 space groups irreps at special 𝒌; 
15239 isotropy subgroups [green book].

Complete space-group irreps
at any commensurate 𝒌 point

Karep (1992), ISOTROPY (1998)
real-time calculations

¼ ¾ 0

Complete space-group irreps
(any commensurate or incommensurate 𝒌)

ISO-IR, Stokes & Campbell (2014)
Tabulated – not real-time!

.31 0 0

Space-group irrep calculations

𝑒ଶగ௜𝒌⋅𝒙



Irreps to (3+d)D superspace

 New irreps matrices for all space groups at commensurate k vectors.  
Similar to earlier matrices (𝑔ᇱ ൌ 𝐴𝑔𝐴ିଵ for 𝑔 ∈ 𝐺), modern form.

 Separated form makes tabulation possible for the first time!

 Irrep matrices tabulated for superspace extensions of all space groups 
for the first time.  Their isotropy subgroups are superspace groups.

Acta Cryst. A69, 75-90 (2013).



Selecting an isotropy subgroup:

parent space-group symmetry

irrep
finite number for each k-point (e.g. X1

+, X3
+, 5

)

order-parameter direction (OPD)
finite number for each IR; special points/lines/planes in abstract representations space

k-point
finite number of types (e.g. , , ), but  number of points

isotropy subgroup
[1] space-group type (1 to 230)
[2] supercell basis (relative to parent)
[3] origin of supercell (relative to parent).



{(1,0,0),(0,1,0),(0,0,1)} 

P2

a
b

Distortion: (basis, SG-type)

{(2,0,0),(0,1,0),(0,0,1)} {(2,0,0),(0,2,0),(0,0,1)}

{(1,0,0),(0,2,0),(0,0,1)}



P2

Two distinct cases with same basis = {(2,0,0),(0,2,0),(0,0,1)}

a
b

Distortion: (basis, origin, SG-type)

origin: (0,0,0) origin: (½,0,0)



(a,a,0) Cmm'm'(a,0,0)  P4mm'm' (a,a,a)  R-3m'

(a,b,0)  P2'/m' (a,a,b)  C2'/m'

(a,b,c)  P1ത

Pm3തm1′

Irreps vs symmetry groups

3-dimensional irrep m𝛤ସା irrep of has 6 OPDs.

kernel  

5 epikernels



Symmetry groups and irreps basis functions provide complementary 
constraints!  Neither approach negates or weakens the other.  They’re 
fully compatible and actually work best together.

Irreps vs symmetry groups

Irrep Symmetry
groupfr
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Especially in the area of magnetic-structure analysis, the practical 
use of irrep basis functions developed first, though the symmetry 
group infrastructure eventually caught up.  One can now refine irrep 
basis functions that obey specific symmetry-group constraints.



Supercell description (approximate commensurate cell)
List moment vectors of atoms in the asymmetric unit 
of the MSG of the superstructure. 

Wave description (incommensurate)
List complex Fourier amplitude vectors (sine and cosine) of atoms 
in the asymmetric unit of the MSG of the basic unit cell at all 
satellites of non-negligible intensity in the reciprocal parent cell.

Irrep description (commensurate or incommensurate)
List the amplitudes of the irrep symmetry modes consistent with 
the MSG or MSSG.  Include secondary irreps, multiple instances
of same irrep, and all components of multi-dimensional order params.

If presented with sufficient generality, all three descriptions have the 
same number of free parameters, whether or not symmetry is applied.

Incommensurate-structure descriptions



4-cell magnetic helix (bcc)



4-cell magnetic helix (bcc)
Commensurate: 95.140 𝑃௖4ଷ22

Incommensurate: 97.1.21.2.m152.2    𝐼4221′ሺ0,0,𝑔ሻ𝑞00𝑠



 Symmetry-modes span the same configurational space as traditional coordinates 
if all relevant k-points, irreps, and OPD components are considered 
simultaneously.  Number of free variables is conserved!

 The relationship between traditional and symmetry-mode coordinate systems is 
linear! Related by an invertible square numerical matrix. One mode can affect 
many symmetry-distinct atoms, and one atom can be affected by many modes.

 Have you ever constrained a model by manually constructing a linear 
combination of traditional parameters and fixing them to zero?  Symmetry modes 
can be viewed as linear constraints that you can either refine or fix (at zero). 

 Symmetry modes are waves of a specific k vector.  Irreps are defined separately 
for every point in the first Brillouin zone.  Two wave vectors separated by a 
reciprocal-lattice vector have the same irreps.

 Symmetry modes very often provide the most natural/efficient basis. Nature tends 
to activate as few symmetry modes as possible.  Even complicated magnetic 
structures are usually described by a single irrep!

Traditional vs symmetry-mode parameters



Superspace symmetry operations

Space group elements transform atoms into other atoms.  Superspace group 
elements do this too, but must also transform the incommensurate waves attached to 
those atoms.  Regular space group operations can’t do that.

Symmetry operations can permute the propagation vectors of the star of 𝑘, and 
hence relate the complex vector amplitudes of the waves to one another.  They 
change both the direction and phase of such a complex vector.

The complex amplitude of a magnetic wave transforms like a magnetic axial vector 
(includes factors for det ሺ𝑅ሻ and time reversal 𝜃).



222 I C2x C2y C2z

I I C2x C2y C2z

C2x C2x I C2z C2y

C2y C2y C2z I C2x

C2z C2z C2y C2x I

Tabulating superspace groups
• Start with 3D space group (𝑅, 𝑣)
• Establish the 𝑘-vector options, based 

on (3+d)D Bravais classes.
• For given 𝑘; calculate M and 𝜖.
• Only phases ሺ𝛿ሻ of generators are 

unknown.  Build matrices for the 
whole group in terms of them.

• Build multiplication table, with self-
consistent phase requirement.

• System of modular equations, can be 
solved using Smith-normal form.

• Each solution is a candidate.  Test 
equivalence to isolate unique results.



Testing SSG equivalence
I have two sets of operators (𝐺 and 𝐺′) that might be settings of the 
same SSG.  Find a transformation matrix S that simultaneously 
transforms every 𝑔 ∈ 𝐺 to a corresponding element 𝑔′ ∈ 𝐺′.



Acta Cryst. A 6, 365-373 (2007)Acta Cryst. A67, 45-55 (2011).

Acta Cryst. A69, 75-90 (2013).

Tabulating superspace groups
Builds on work of Orlov, Chapuis, and Yamamoto



Infrastructure for d = 3 superspace

Superspace groups
775     for d = 1
3338   for d = 2
12584 for d = 3

Over 16,000 for 𝑑 ൌ 1,2,3

Magnetic superspace groups (NEW)
Almost 350,000 for  𝑑 ൌ 1,2,3

Equivalence testing against our database allows us 
to determine whether or not two structures with 
very different presentations are equivalent.



 Irreps and isotropy subgroups tabulated at d = 1 incomm k vectors.

 Incomm displacive and occupancy modes in ISODISTORT (2007).

 Superposition of commens and d = 1 incomm modes (2010).

 Incommensurate magnetic modes (2011).

 Superposition of commens and 𝑑 ൌ 1,2,3 incomm modes (2014).

 Incommensurate rotational modes in (2016).

Symmetry modes in (3+1)D superspace

Acta Cryst. A6, 365-373 (2007)



Multi-ferroic TbMnO3

Incommensurate cycloidal magnetic structure. Transverse 𝑚Σଶ and 
longitudinal 𝑚Σଷ order parameters are superposed 90° out of phase.

Must consider full space-group irreps (whole k-star, േ𝑘) to get the 
symmetry and physical properties right!  This would have avoided a 
significant controversy in the literature that spanned many years.

This irrep combination couples to the secondary ferroelectric Γସା
irrep, making it a multi-ferroic material.



Magnetic skyrmion lattice

Image from Mühlbauer et al., Science 323, 915-919 (2009).



𝑘ଵ ൌ 𝛼,𝛼, 0 ,   𝑘ଶൌ െ2𝛼,𝛼, 0 ,   𝑘ଷൌ 𝛼,െ2𝛼, 0   → 𝑘ଵ ൅ 𝑘ଶ ൅ 𝑘ଷ ൌ 0

𝒌𝟐

𝒌𝟑

𝒌𝟏

𝒎𝟐

𝒎𝟑

𝒎𝟏

𝑚ଵ ൌ 𝑖 𝑚,െ𝑚, 0 ,   𝑚ଶൌ 𝑖 𝑚, 2𝑚, 0 ,   𝑚ଷൌ 𝑖ሺെ2𝑚,െ𝑚, 0ሻ

2D skyrmion-like lattice

Three incommensurate transverse 
waves, locked in phase, form this 
remarkable pattern.  It has only 
one adjustable magnetic degree 
of freedom.

It is readily described in terms of 
either symmetry-related Fourier 
wave amplitudes or an irrep basis 
function.
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