Second Target Station

Presented to Neutron Advisory Board

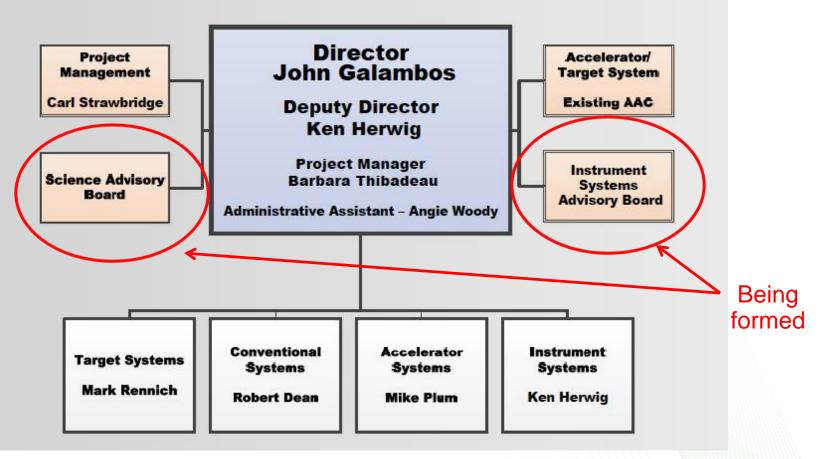
Presented by John Galambos STS / PPU Project Office Director

June 30, 2016 Clinch River Cabin Oak Ridge, Tennessee

STS / PPU: Single Mission, Separate Projects

SNS-PPU

- Increases power capabilities of existing 60 Hz accelerator structure from 1.4 MW to 2.8 MW
- Increases power delivered to first target station (FTS) to 2 MW
- Increases neutron flux on available beam lines
- Provides platform for construction of STS


SNS-STS

- Initial suite of 8 beam lines, with capacity to accommodate 22 beam lines
- 467 kW diverted to STS by additional accelerator systems
- 10 Hz repetition rate, enabling broad dynamic range
- World's highest brightness short-pulse source optimized for cold neutrons
- 380,000 ft² of new infrastructure

STS / PPU Project Organizations Formed

Second Target Station Project Office

STS / PPU: separate structures – common components

Project Framework Established

- WBS for PPU and STS are defined
 - Scope definitions to level 6

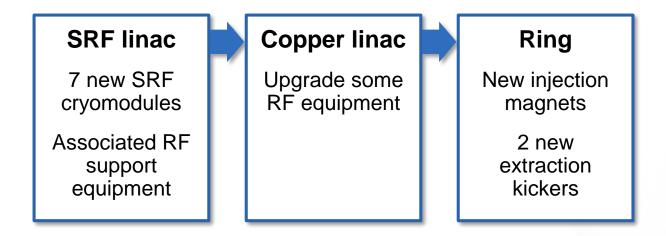
WBS L2	WBS L3	WBS L4	WBS L5	WBS L6	CAM
	Project Management- John Galambe				
	P.1.1	Project Management			
				Project Director, Project Manager, Administrative support,	
			Management	Travel	CAM name
		P.1.1.2	Reviews and committees	Reviews, advisory committees, etc.	CAM name
		Project Support			
		P.1.2.1	Project Controls	Project controls staff, software licenses, training, travel	CAM name
		P.1.2.2	Finance	Finance staff (including M&S and travel if appropriate)	CAM name
		P.1.2.3	Procurement	Various support staffs and associated M&S	CAM name
		P.1.2.4	IT/Information Management	Various support staffs and associated M&S	CAM name
		P.1.2.5	HR	Various support staffs and associated M&S	CAM name
			Communications	Various support staffs and associated M&S	CAM name
	P.1.3	ESH&Q	ESH&Q	CAM name	
				ESH staff, QA staff, associated M&S and travel, costs for ARRs	
		P.1.3.1	ESH&Q	and safety related reviews	
	SCL- Matt Howell				
	P.2.1	System Management			
				Costs for management of this particular system, admin support	
				dedicated to system, travel and M&S that does not directly	
			Management and Intra-System	benefit one of the individual systems, includes integrated	
		P.2.1	Integration	testing within subsystem	CAM name
	P.2.2	Cavities- Senoir SRF engineer	-		
				Costs for management of this particular system, admin support	CAM name
				dedicated to system, travel and M&S that does not directly	
			Management and Intra-System	benefit one of the individual systems, includes integrated	
		P.2.2.1	Integration	testing within subsystem	
			Cavity Procurement- Senoir SRF engineer		
			P.2.2.2.1	Integration	Labor costs associated with management of cavity procurement.
					This WBS includes design of the cavities, incorporating all lessons learned from previous operation and development
			P.2.2.2.2	Design	of the high beta cavities. T
					Twenty eight 0.81 beta cavities will be procured with bulk chemical processing and vacuum bake out. Vendors will be
					evaluated based on technical capability, past performance, and the ability to respond to the schedule. Previously, it
					has benefitted the project to procure the niobium and niobium/titanium alloy material separately and supply that
			01110	Esh/Drocura	and shall be also an decound on Provide Annalises also also be also and an also all the second and the Party

- Technical Design Report (Jan, 2015) is design basis
- Staff
 - Largely matrixed from operations (similar to APS-U)
 - 78 people have charged to PPU or STS through May
 - 6 contracts for outside individual support
 - Subcontracts for AE and system measurements
- Meetings
 - STS & PPU weekly
 - Level 2 teams have own meetings

PPU: Process towards detailed design evaluation

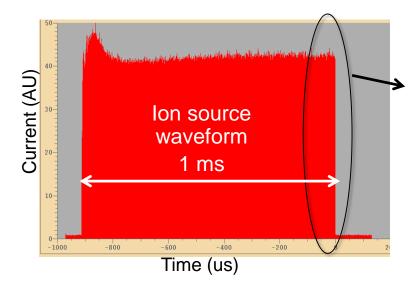
• DOE project critical decisions:

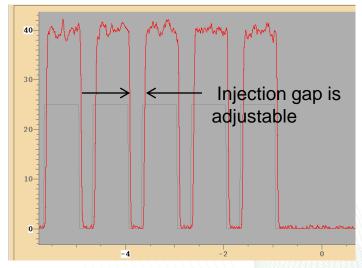
- CD-0: Mission Need (STS has this)
- CD-1 Approve baseline performance (conceptual design + initial cost estimate)


	1	FY16				FY17													
	Mar	Apr	May	Jun J	ul /	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Scope and requirements defined																			
Complete required project documents (PPEP, QA, RMP, etc)																			
Complete Analysis of Alternatives Document																			
Initiate NEPA determination																			
Complete conceptual design report																			
Develop estimates and schedule																			
Complete Technology Readiness Assessment																			
Internal review of completed document, estimate and schedule																			
Address recommendations+ prepare for ALD review																			
Hold ALD's CDR review of CDR and estimate																			
Address recommendations+ prepare for DOE SC CD-1 review																			
DOE SC CD-1 review																			
Receive ESAAB approval of CD-1	leceive ESAAB approval of CD-1 High level PPU approach to CD-1																		
Schedule float																			

- PPU: proceed to CD-1 in FY-17
 - Conceptual Design Report this summer
 - System reviews early next year
 - DOE CD-1 review May 2017

SNS-PPU: Path to increased power


Accelerator power = Energy			Current	× Pulse length × Repetition rate				
1.4 MW	0.94 GeV		26 mA	1 ms	60 Hz			
2.8 MW	1.3 GeV		38 mA	1 ms	60 Hz			



PPU and STS are technically decoupled

- PPU provides 47 kJ per pulse needed for STS
 - 2.8 MW at 60 Hz
- Can modulate power delivered to each target
 - Adjusting the linac chopping fraction, can reduce power to FTS
- 10 Hz /20 Hz
 - Pulses can be diverted to STS at any frequency

PPU leverages technology developed for 1.4 MW

Ion source test stand has led to current increases demonstrating capability required for PPU	Ring damper system is operational, providing insurance against instabilities at higher PPU intensities	
---	--	--

Spare SRF cryo-module operational since 2012, demonstrating PPU required cavity gradient

Spare RFQ is ready for beam tests and is expected to provide required PPU transmission Plasma processing for in situ cavity gradient recovery, needed to improve poorly performing installed cryo-modules, has been demonstrated

2015 Accelerator Advisory Committee:

"... decision to utilized existing accelerator technology is to be commended."

"supports the decision to reduce the number of cryo-modules from 9 to 7"

2016 Accelerator Advisory Committee:

"Many of the present upgrades will provide a good foundation for the PPU."

PPU: Movement towards CD-1

- Defining approach for PPU equipment delivery: minimize in house effort
 - Statements of interest from partner labs (FNAL and J-Lab) for building superconducting RF cryo-modules
 - Partner with industry for high voltage modulator fabrication
 - Magnet fabrication
- High level schedule produced
 - Defines activity linkages
 - Understand operational interfaces

J-Lab director letter							
of support for SRF							
fabrication							

Jefferson Lab	
OThomas Jefferson National Accelerator Facility	
Exploring the Nature of Matter	
Hugh E. Montgomery Laboratory Director and Jefferson Science Associates President	

April 4, 2016 Phone: (757) 269-7552 &-mail: mont@ilab.org

Dr John Galambos Project Office Director: Second Target Station/ Proton Power Upgrade Neutron Science Directorate Oak Ridge National Laboratory

Dear Dr Galambos,

CC

Andrew Hutton forwarded to me your letter of March 18, 2016 in which you discuss the possibility of a Jefferson Lab participation in the cross-module fabrication for the Spallation Neutron Source Proton Power Upgrade.

We are very pleased to hear of your interest in working with Jefferson Lab and we would cartainly like to explore this initiative in more detail. While we believe that the time frame you indicate would match well with the availability of our infrastructure, we can only make a rational decision based on a rather complete understanding of the scope and schedule of the work.

With the recent discussions in BESAC about the prioritization of their construction portfolia, it would be very helpful were you to provide us with current formal status of the project. This would allow mo to have an oducated discussion with both Tim Hallman, AC for Nuclear Physics and also with Harrise Kung, to get the Basic Energy Sciences perspective on the alignment of this initiative with the Office of Science plans. We are centraling ware that such collaboration between laboratories is very much encouraged and are hopeful that this arrangement would be well neceived in the Office of Science.

In summary, we are positive and look forward to ongoing discussions.

Sincerely Azun

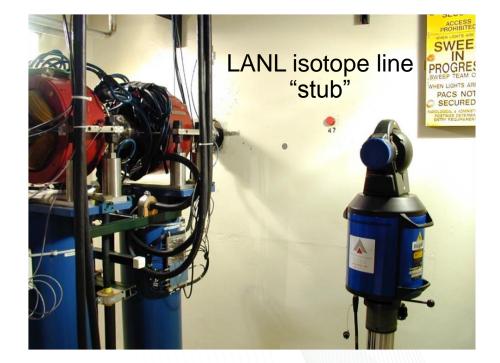
Hugh E. Montgomery Laboratory Director

Paul Langan, ORNL, Associate Laboratory Director for SNS Thomas Mason, Laboratory Director, ORNL Andrew Hutton, Jefferson Lab AD for Accelerators Allison Lung, Jefferson Lab, Chief Planning Officer Robert McKeown, Jefferson Lab Deputy Director

12000 Jefferson Avenue, Newport News, VA 23606 • • www.jlab.org Jefferson Lab is managed by the Jefferson Science Associates, LLC for the U.S. Department of Energy Office of Science

Other CD-1 Preparations

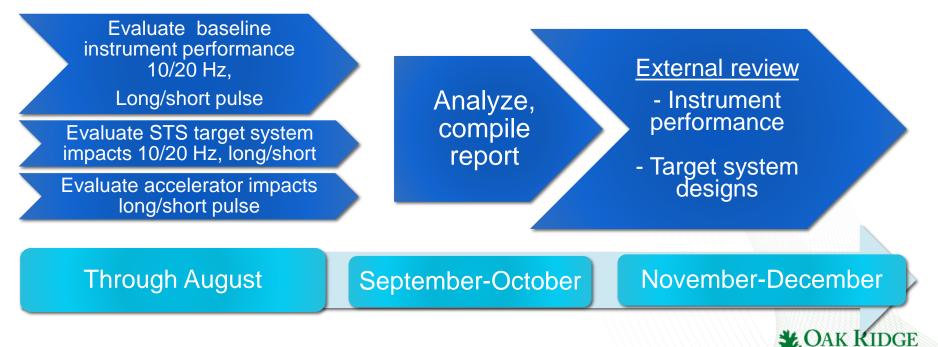
- Alternates: examining higher power options
 - Increased risk as we move farther from our established technology base
- Schedule: be poised to start spending project funds in FY18
 - Securing space to clear out klystron gallery Jan. 2018
 - Statements of work prepared
- NEPA documents



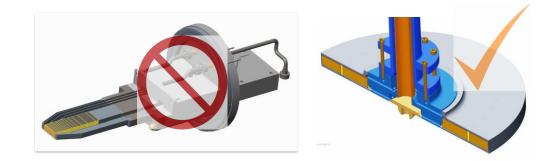
11 NAB 2016

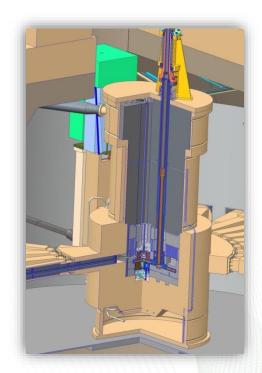
PPU: Managing SNS operations impact

• Tunnel activities during normal maintenance outages


- One 6 month outage at the project end
 - Ring injection chicane
 - Last cryo-module install
 - Install a "stub" in the RTBT for connection to STS tunnel
 - Coincide with 3 month IRP replacement

STS: Process towards detailed design evaluation


- Refine the design
 - Target concept
 - Conventional facility building requirements and site layout
 - Instrument concepts, requirements
- Address 10/20 Hz, long pulse
 - Instrument performance and target system impacts


ational Laboratory

STS 2016 Target System Activities

- Solid W target: rotating target adopted
 - Facilitates higher power



- Target systems reconfigured
 - Vertical maintenance
 - No hot-cell
 - Bunker approach for beam-line
 / target interface

STS 2016 Conventional Facilities Activities

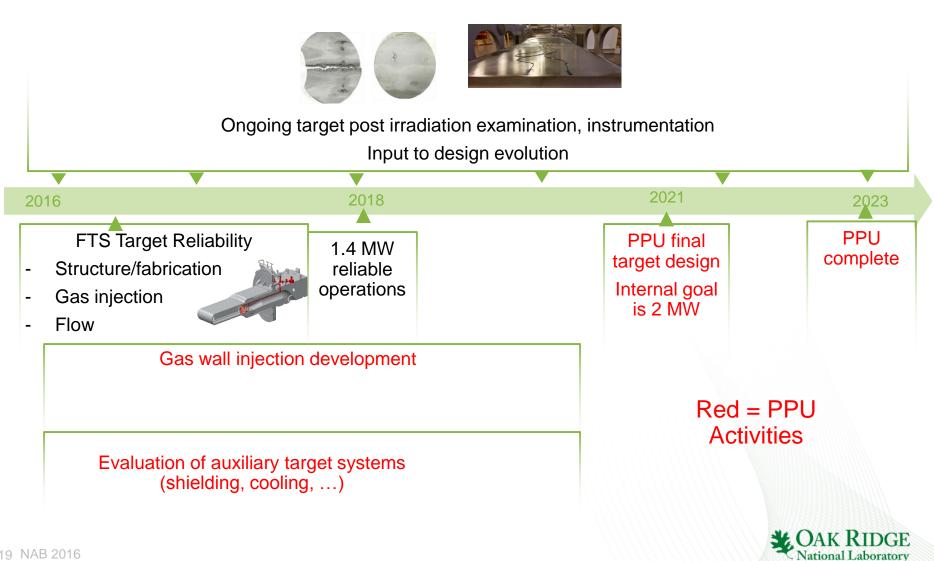
Summary

- STS/PPU project office is formed
 - Organizations are moving forward
- Process is defined for design evaluation
 - PPU: CD-1 in FY17
 - STS: Refine the technical design and review this calendar year

Questions?

Backup

SNS upgrade is packaged as 2 projects: SNS-PPU and SNS-STS

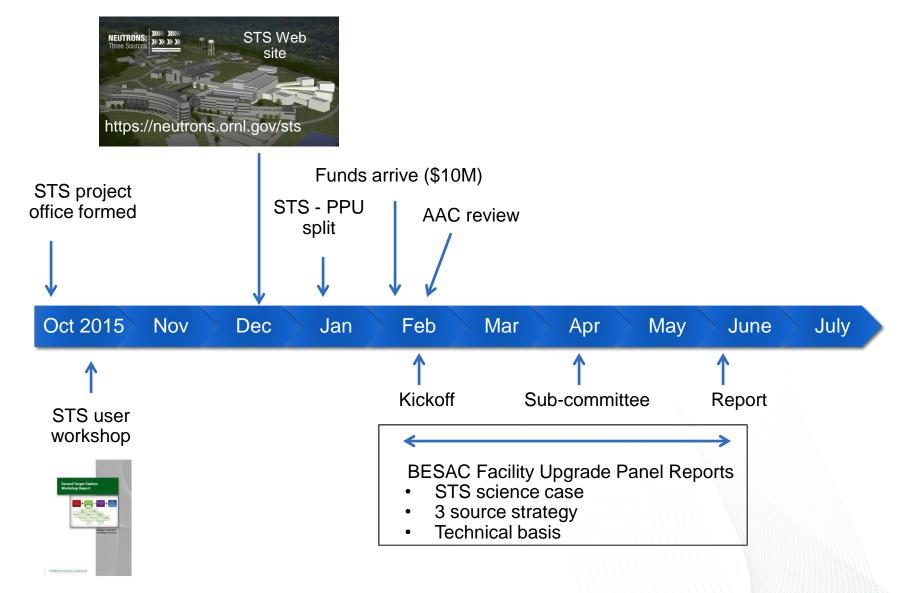

SNS-PPU upgrades the existing accelerator structure

Increases neutron flux to existing beam lines

Provides a platform for SNS-STS SNS-STS constructs a second target station with an initial suite of 8 beam lines Mission need and science case for SNS-PPU and SNS-STS are the same

C. C.C.C.C.C.

PPU target plan: coupled to FTS activities


STS target systems 10/20 Hz impact assessment

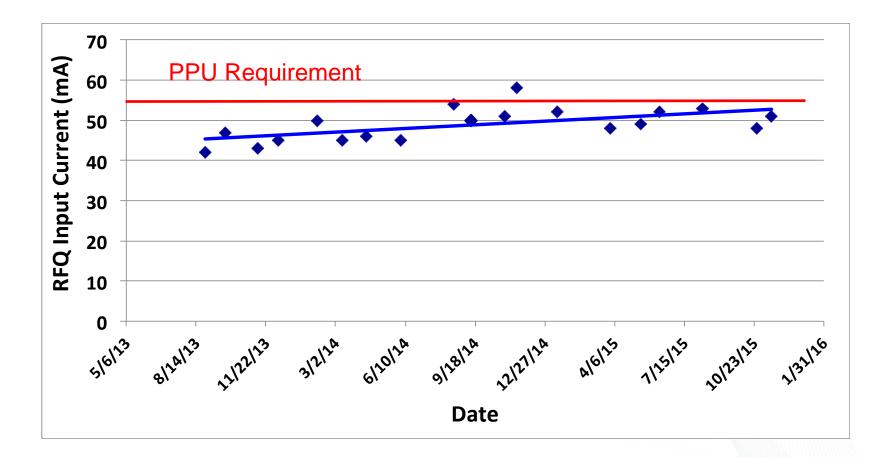
- ~ 35 impacted systems are identified
 - Cooling, rad waste, shielding, choppers, ...
- Cost impact estimate has begun
 - S9ome systems remain to be evaluated complete for fall review
- Target systems are not expected to be a major cost driver for the 10/20 Hz decision

System	Aspect/Subsystem	Impact of Higher Rep Rate	Reasoning	20 Hz Cost	Cost Inflection Rate	Operating Inpact
				Impact		
Shielding						
	Bulk Shielding	Modest size increase	Only a small increase in shielding thickness would be needed for a factor of 2	Small	None	None
			or 3 increase in power -ANALYSIS REQUIRED			
	Shutters; Beam on	None	Only a small increase in shielding thickness would be needed for a factor of 2	None	None	None
			or 3 increase in power-ANALYSIS REQUIRED			
	Shutters; Beam off	Possible depth increase	Shutter beam-off requirmeents are based on target area activation; increased	???	None	None
			beam on target time will increase activation proportionately - shutter depth			
			could increase up to xxx% for a doubling of the rep rate			
Vessel						
1	Size/configuration	Modest size increase	The vessel exterior defines the active cooled outer limit. Thus, the lower	<\$100K	None	None
			portion of the vessel will increase in diameter and height by several inches-			
			ANALYSIS REQUIRED			
1		Size Increased	The power increase will lengthen the actively cooled shield plugs; Likewise the	3555	None	None
	shielding inside		dpa damage boundary will increase thus increasing the diameter of the			
	vessel		plugs.ANALYSIS REQUIRED			
Moderators						
1	Size/configuration	None	In order to maintain the physics performace of the system the basic moderator	None	None	None
			size and configuration must remain constant			
		Cryogenic system and piping must be increased in size in	Deposited heat will increase proportional to rep rateANALYSIS REQUIRED TO	5555		???
		proportion to the time average power increase	CONFIRM ASSUMPTION			
	Life	Life could be decreased	Increasing the thickness of the poison layer could compensate for the	None	255	Possible decrease in moderator neutronic
			increased dpa damage			efficiency for same lifetime, Possible increase in
						reflector plug change-out rate
Reflector						

STS FY 2016 Project Activities

Ready to proceed: Accelerator provisions exist for beam energy increase_{96% of ring/transport}

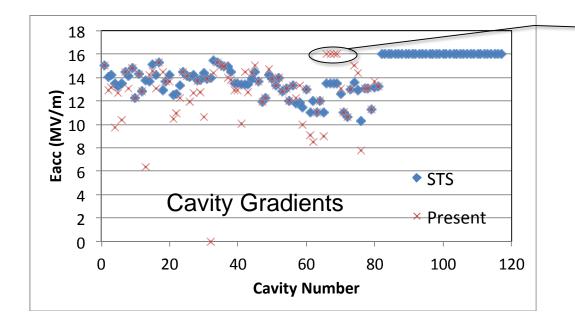
magnets are 1.3 GeV ready


Fill empty space with kickers

National Laboratory

Beam injection: **Tunnel:** Fill 7 empty drift sections with Upgrade injection cryo-modules (space available for 9) magnets **Front End** LINAC Upgrade 101-00-00-0-0-0-0 **Beam extraction:**

Klystron gallery: Fill empty area with high-power RF equipment


Ion source current: PPU requirement demonstrated

We would like 10-20% margin: keep improving

SRF for 1.3 GeV: leverage operations developments

Existing spare cryomodule	
performance	

Gradients

- PPU gradient is the same as the 2012 spare CM
- Poor performers are improved by plasma processing
- Only need 7 new cryo-modules: space exists for 9

