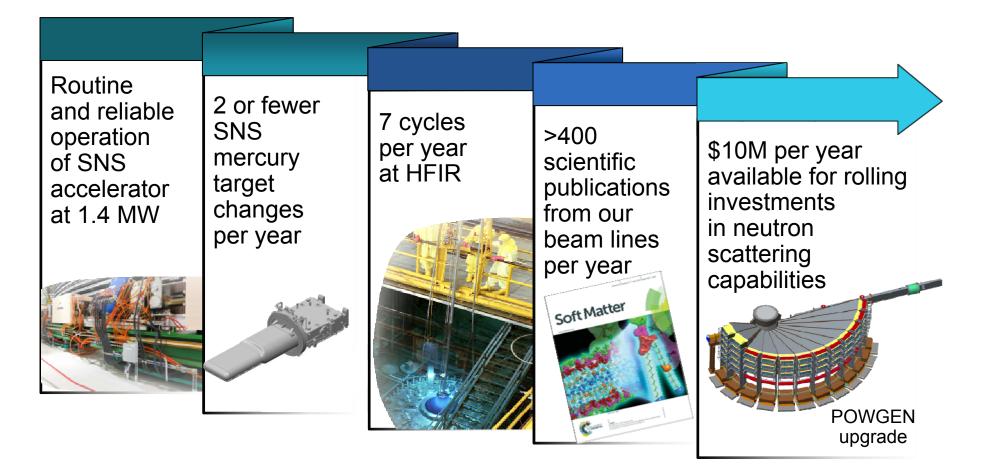

Science Productivity Process and Major Instrument Upgrades

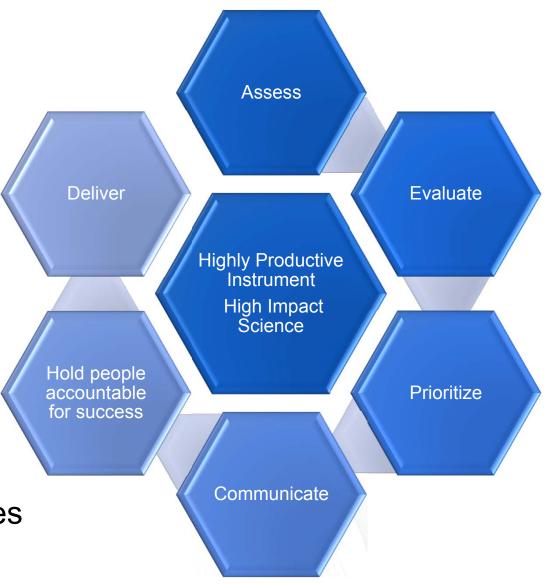
Presented to **Neutron Advisory Board**


Presented by **Dean Myles** Chair, Science Productivity Steering Committee.

June 30, 2016 Clinch River Cabin Oak Ridge, Tennessee

ORNL is managed by UT-Battelle for the US Department of Energy

Our NScD strategy translates to 5 immediate organizational goals


Science Productivity Process:

Steering Committee

- Chair, Chief Scientist and Division Directors for QCMD, BSMD, CEMD, NDAV and ISD
- Recommends actions to Associate Lab. Director
- Priorities aligned with Science Strategic Plan

Assessment

- FY15-16 Internal
 - Established baseline
- FY-16-18 External
 - Beamline Review Panels
- Project teams established
- Technical Director manages integrated project suite

Science Productivity Process: Investing in Major Instrument Improvements

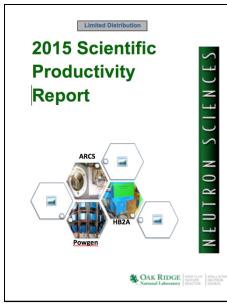
- 2015: Assess instruments and facility infrastructure
 - Identify opportunities for developing new capabilities
 - Identify the key issues limiting science productivity
- 2015-16: Science Productivity Steering Committee
 - Set science priorities (with Divisions & Directorate)
 - Identify major instrument projects (>\$100K / complexity)
 - Set instrument priorities & resource allocation.
 - Execute and manage projects/resultant actions

Actions may include

- Prioritization of major upgrades to existing instruments
- Forming expert teams to tackle complex technical problems/projects
- Investing in R&D on sample environment/data analysis solutions
- User community engagement through workshops and reviews

2015 Baseline assessment evaluated each instrument in six areas

Productivity	Does the instrument serve a robust and successful user community?
Capability	Is the instrument equipped to address specified scientific challenges?
Utilization	Does the instrument make efficient use of neutron production time?
Reliability	Are instrument systems performing properly when needed?
Resources	Are resources available to the instrument at a sufficient level?
Safety	Are there issues that present undue risks to users, staff, or the facility?



Steering Committee sets FY priorities and initiates major upgrade projects

May/June

Assessment reviews for all **30 instruments**

• Set group/ division priorities

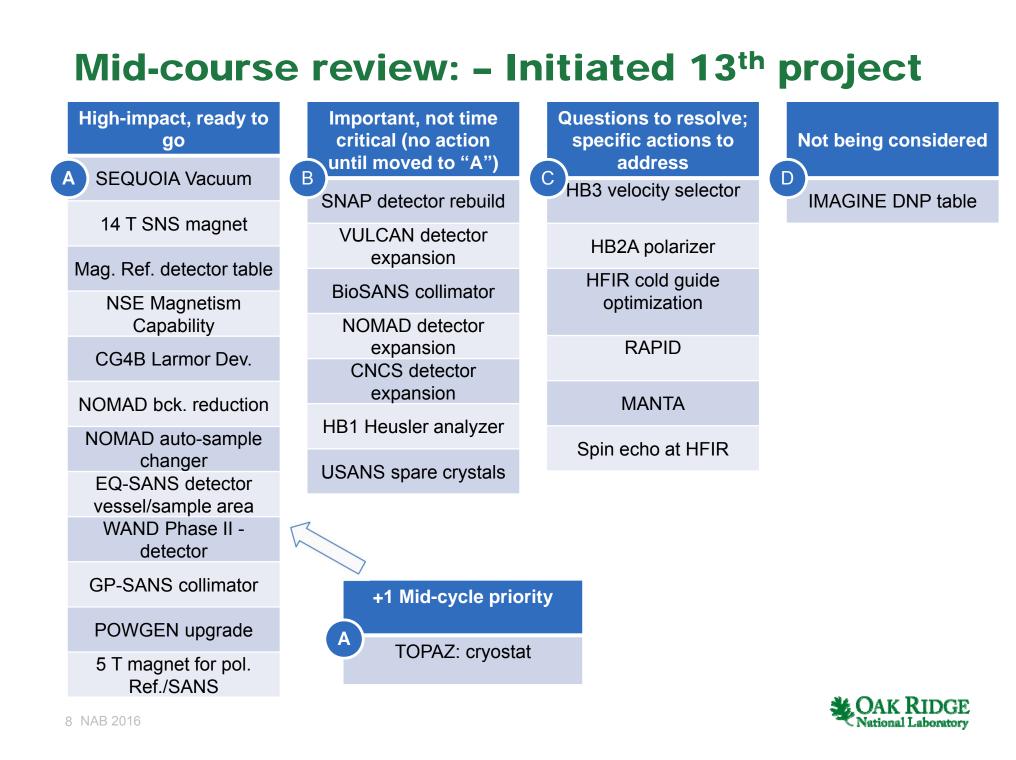
Prioritization meeting: Setting Directorate priorities

- -ate June Divisions
 - present science
 - case and concept
 - Decision: Allocate resources to develop project plan

Project plan review: Allocation of resources

- Work planning for projects commencing in next FY
- September/Octobe Design criteria document for larger (capital) projects

2015: 26 Instrument Projects - 12 FY16 Priorities

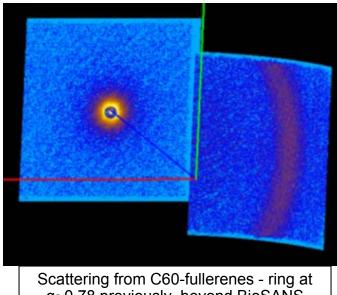

High-impact, ready to **Questions to resolve:** Important, not time go. Execute. critical (no action specific actions to Not being considered until moved to "A") address С В D **SEQUOIA Vacuum** HB3 velocity selector SNAP detector rebuild **IMAGINE DNP table** 14 T SNS magnet **VULCAN** detector HB2A polarizer expansion Mag. Ref. detector table HFIR cold guide **BioSANS** collimator optimization **NSE** Magnetism Capability NOMAD detector RAPID expansion CG4B Larmor Dev. **CNCS** detector expansion MANTA NOMAD bck. reduction HB1 Heusler analyzer NOMAD auto-sample Spin echo at HFIR changer **USANS** spare crystals **EQ-SANS** detector vessel/sample area WAND Phase II detector **GP-SANS** collimator

POWGEN upgrade

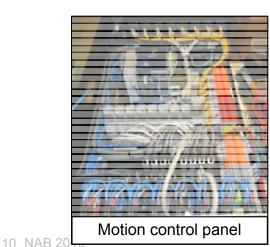
5 T magnet for pol. Ref./SANS

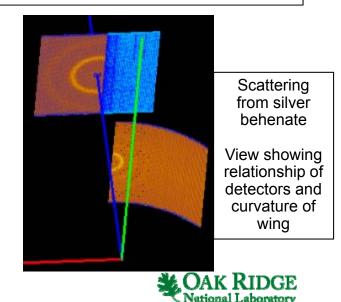
7 NAB 2016

Project Execution: FY 2016 A-list


Item	Lead	Completion Date	FY16 (\$k)	Total (\$k)
SEQUOIA Vacuum	L. Jones	Summer 2017	708	1,485
14 T SNS magnet	M. Stone	Fall 2017	1,680	2,004
Mag. Ref. Improvement Project	M. Fitzsimmons	April 2017	1,005	1,277
NSE Magnetism Capability	G. Ehlers	Dec. 2015 (1 st exp.)	185	334
CG4B Larmor Dev. Beamline	L. Robertson	May 2017	500	500
NOMAD background reduction (I)	M. Tucker	Oct. 2016	143	156
NOMAD auto-sample changer	M. Everett	Dec. 2017	507	715
EQ-SANS detector vessel/sample area modifications	W. Heller	Mar. 2017	330	357
WAND Phase II - detector	M. Frontzek	April 2018	0	1,226
GP-SANS collimator replacement	L. Crow	April 2017	690	1,025
POWGEN Phase-II upgrade	A. Huq	Sep 2017	2,812	4,583
5 T magnet for pol. Ref./SANS	M. Fitzsimmons	August 2017	247	256
TOPAZ cryogoniometer	A. Huq	Spring 2017	205	224
		TOTAL	*9,012	14,142

BioSANS' new west wing detectors ready for commissioning


- Installation phase completed
- All startup checklist items completed
- Calibration studies continue and commissioning has begun


West wing detector before installation

Scattering from C60-fullerenes - ring a q~0.78 previously beyond BioSANS high-q capabilities

ARCS Vacuum Upgrade

<u>Project goals:</u> Improve performance and reliability of ARCS sample and detector vessel vacuum system Project completed: February 2016

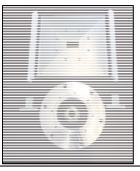
- Installed new standard roughing pump package, 2 turbo pumps and vacuum gauges
 - Improved vacuum performance: detector tank pumpdown from > 40 hrs to ~ 18 hrs, sample tank pumpdown from 20 minutes to ~ 10 minutes
 - Improved operations, reliability and maintenance: existing cryopumps may be regenerated without risk of experiment interruption
- Installed new vacuum control system
 - Improved operational safety: additional interlocks and controls, e.g. checks to inhibit detector high voltage, monitoring of sample isolation valve pneumatic pressure, sample chamber flapper valve to ensure proper venting, guide vacuum monitoring
 - Improved maintenance: facility-written control code may be debugged and improved, uses standard components



MR – Magnetism Reflectometer Improvement Project

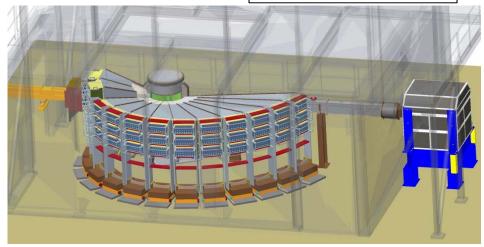
- Awarded contract for hexapod
 - Enables high precision, versatile sample and sample environments positioning
 - Accommodates a variety of sample environment equipment
 - On site in October 2016

Vendor photo of hexapod



Orange cone schematically represents hexapod

POWGEN Project


- Replaces difficult to maintain sample vessel (thinner window)
- New coarse radial collimator
 - Eliminate shadows (≈10% improvement in detector illumination)
 - Fill with Argon background reduction
- 10 new detectors completes one side (40 total)
- New fine radial collimator – eliminate shadowing of highest and lowest scattering angles
- New sample vessel ordered
- Project completion Sept 2017

Window assembly for upstream optics

Support assembly for upstream optics

Instrument Projects – FY17 Priorities

High-impact, ready to go; develop plan in next 2 months

Α

SNAP Detector rebuild

HB3 velocity selector

Vulcan Detector build-out

CORELLI: Thimble

NRSF-2 Upgrade

HB-1A backend

HB-3A Anger Cameras

CNCS collimator

HYSPEC Elevator

POWGEN: Phase II detectors

Important, not time critical (no action until moved to "A") TOPAZ detector

В

expansion SEQUOIA collimator

BioSANS collimator

NOMAD detector expansion HB1 Heusler analyzer

USANS spare crystals

Questions to resolve; specific actions to address

SNAP Guide

BL4A Toploader / Halbach Magnet *

Lab ppms

HFIR cold guide optimization *

RAPID *

MANTA

Spin echo at HFIR

D TOF - top loaders #

2016-2018: BeamLine Review Panels

- Review the mission need, technical capabilities and scientific impact of subsets of NScD instruments, organized by type and class.
 - Conduct 2 or 3 external Beamline Review Panel/annum
 - In 2016: i) Powder Diffractometers & ii) SANS/Reflectometers
- Aug 3, 2016: Powder Diffraction Review: Chair: John Parise
 - POWGEN, NOMAD, SNAP, WAND and HB-2A beamlines (RAPID)
- Assess instrument performance and science needs, focusing on:
 - Scientific productivity (users/publications etc.)
 - Management structure (number of staff, staff effectiveness)
 - Current capabilities (condition, quality, upgrades needed, etc.)
 - Ability to meet user needs for data collection, reduction, and analysis.
 - Adequacy and reliability of software, sample environment
 - Planned upgrades and future development of instrument suite
- The recommendations and findings of each BRP will inform the priorities for succeeding phases of major instrument improvements.

Summary

- NScD is committing \$10M/annum to instrument improvements.
- Current major instrument improvements will be completed in 3-5 fiscal years
- FY16 priorities set/executing:
 - 13 major instrument upgrades in progress
 - (Phased funding \$9M in FY16, \$5M in FY17)
- FY17 priorities set/initiated:
 - 10 major instrument upgrades now in project development
 - (~\$5M in FY17)
- NScD has established recurring, triennial external reviews of instrument suites and science needs
 - The recommendations and findings of each BRP will inform the priorities for succeeding phases of major instrument improvements

