

Overview of the SNS Second Target Station - preparing for instrument selection

Ken Herwig Group Leader for Second Target Station Instrument Systems

Oak Ridge, Tennessee September 25, 2019

ORNL is managed by UT-Battelle LLC for the US Department of Energy

https://conference.sns.gov/event/193/

Science at the Second Target Station Workshop

Exploring transformative capabilities for discovery science

December 9–10, 2019

SNS and HFIR provide unparalleled neutron scattering capabilities for DOE missions and science

HFIR is the world's most powerful reactor-based neutron scattering source

CAK RIDGE

SNS upgrades will accelerate scientific progress and deliver wholly new capabilities

PPU project: Double the power of the existing accelerator structure

- First Target Station (FTS) is optimized for thermal neutrons
- Increases the brightness of beams of pulsed neutrons
- Provides new science capabilities for atomic resolution and fast dynamics
- Provides a platform for STS

CAK RIDGE

STS project: Build the second target station with initial suite of beam lines

- Optimized for cold neutrons
- World-leading
 peak brightness
- Provides new science capabilities for measurements across broader ranges of temporal and length scales, real-time, and smaller samples

High-level status of SNS upgrade projects

Proton Power Upgrade (PPU)

- Critical Decision (CD)-0, CD-1 and CD-3a approved by DOE
- Partner Labs selected FNAL, LBNL and J-Lab.
- Successful CD-3b review in June 2019
- Ready for CD-2 review at end of 2019
- Early power ramp-up to 1.7 MW proposed for 2022 with start of ramp-up to 2 MW in 2024
- Early project completion in 2024
- Most construction activities occur during regular scheduled maintenance periods

Second Target Station (STS)

- CD-0 approved by DOE
- Design and implementation plan finalized following detailed studies and review panel evaluation in 2017
- Conceptual design packages completed
- Bottom-up cost-estimate by end of August 2019
- Preparing for CD-1 readiness review
- Early project completion in 2028
- Federal Project Director appointed, interim Director appointed, and active search for Director
- Construction has minimal impact on FTS operations

STS will bridge the gap for a high peak brightness pulsed source for cold neutrons

Brightness (n/cm²/sr/Å/s)

Beams of cold neutrons with higher peak brightness and broader ranges of neutron energies are needed to meet challenges at the frontiers of matter and energy:

- Simultaneous measurement of hierarchical architectures across unprecedented ranges of length scales
- Time-resolved measurements of kinetic processes and beyond-equilibrium matter
- Characterization of smaller samples and matter under more extreme conditions
- Applications for developing next-generation materials for energy, security, and industrial applications

Addition of STS to FTS will enable new science to complement FTS and HFIR

STS: Designed to deliver

- Cold (long-wavelength) neutrons of unparalleled peak brightness (1.5 × 10¹⁵ n/s/cm²/Å/ster at λ = 3 Å)
- Short pulses containing neutrons with broad ranges of usable wavelength or energy $(\Delta \lambda = 13.2$ Å at 15 Hz at 20 m distance from source)

STS will help establish US leadership in pulsed cold neutrons

Our goal is to complete 8 world-class instruments ready to begin commissioning with neutron beam (22 total beam lines)

- Control systems and computing infrastructure for all STS technical systems
- Instrument data acquisition

CAK RIDGE

8 notional instrument concepts have been developed to support project planning for a CD-1 readiness review

- Instruments were prioritized by the research community through workshops and advisory boards
- Instrument concepts represent range of types and physical/technical requirements
 - 3 diffractometers, 2 spectrometers, 1 reflectometer, 1 small-angle neutron scattering and 1 small-/wide-angle neutron scattering instrument
 - Instrument lengths of 18 to 90 m
 - Guide and mirror optics concepts
 - Range of detector requirements and types
- Instrument Systems will present these 8 notional instruments as placeholders (but not as final selection) for the CD-1 readiness review (early-2020)
 - Conceptual Design Report includes instrument specific science case, technical concept, and initial performance estimates (key elements of an instrument proposal)

CAK RIDGE

We are planning a third webinar to highlight the science capabilities of these 8 notional instruments as background for the Dec. 9-10 workshop

Principles for STS instrument selection process

- Engage the research community to identify the best science that can be addressed at STS
- Engage instrument designers and experts to develop the best instrument technical concepts
- Is communicative, open, transparent and fair
- Is integrated with relevant project milestone dates and critical decision points
- Establish a STS-Science Advisory Board to advise project management on STS scientific directions and recommend prioritization for instrument construction
- Final decisions will be made by STS-project and NScD management

Engagement with the research community is essential to maximize the science impact of STS

Focused science-themed workshops

- Workshop on neutrino and fundamental neutron physics (July 26-27, 2019)
- Workshop on neutron scattering in complex biological and environmental system science (August 28-29, 2019)
- Propose to continue these throughout the STS project (~2/year)

CAK RIDGE

Science at the STS Workshop

- December 9-10, 2019
- Initiate instrument selection
 process
- Goals
 - Explore new science frontiers opened by STS
 - Build on Early Science document
 - Identify STS science opportunities
 - Identify science champions to develop instrument science cases
- Support moderated, remote participation

Other opportunities for communication and input

- Webinars
- Presentations/booths at local and national science conferences
 - Intrinsically disordered proteins (September 10-11, 2019)
 - ICANS XXIII (October 13-19, 2019)
 - Pittsburgh Diffraction Conference (October 24-26, 2019)
 - 2019 MRS Fall Meeting (December 1-6, 2019)
- American Conference on Neutron Scattering – 2020

3 Natio

Instrument selection criteria will guide prioritization for instrument construction

- Scientific importance and impact
 - Will the proposed instrument advance the frontiers of knowledge?
 - What are the broad society impacts of the proposed science case?
 - Does the science case reflect identified grand challenges?
- Strength of the relevant user community
 - What is the predicted demand?
 - Will inclusion of this instrument maintain a balanced science portfolio across the ORNL neutron sources?
- Uniqueness of STS capabilities
 - Does this instrument take maximal benefit of STS unique source capabilities?
 - Would the capabilities of this instrument be better enabled at another of the ORNL neutron sources?
- Quality of the proposed instrument (world-leading, competitive, other)
- Feasibility, need for R&D, match to project resources and schedule
 OAK RIDGE National Laboratory

Timeline for instrument selection begins now

CAK RIDGE

15

https://conference.sns.gov/event/193/

Science at the Second Target Station Workshop

Exploring transformative capabilities for discovery science

December 9–10, 2019

