SPALLATION MATERIALS TECHNOLOGY

L. K. MANSUR

My Background

Radiation Materials Science Group Leader, Oak Ridge National Laboratory Chairman of Editors, Journal of Nuclear Materials These workshops (with friend and colleague H. Ullmaier)

WELCOME TO PARTICIPANTS

from the IWSMT organizers, sponsors and Journal of Nuclear Materials

- Twentieth anniversary
- Motivations
- Early goals and present status
- Similarities and differences from 20 years ago
- Opportunities
- Impact
- Future

TIME TRAVEL IN NUCLEAR MATERIALS (IN ONE SLIDE)

- The field was born in the 1950's to support nuclear energy
- Materials science itself was just then being synthesized
- Nuclear materials drew from and helped to unify metallurgy, ceramics, materials physics, materials chemistry, ...
- Initial work was directed toward applications for fission reactor fuels and structural materials
- By the mid-1970's, applications to fusion reactor issues grew into what is now a second major sector
- In the 1990's, there was a burgeoning interest in high power accelerator targets irradiated with GeV energy particle beams--a unique irradiation environment

MOTIVATIONS

- Designs were underway in the 1990's and earlier for high powered spallation neutron sources
- Aggressive conditions, well beyond then-current experience, were anticipated
- Nearly no irradiation data were available for high energy-high power beams on liquid metal targets
- With no directly applicable data, our approach was to assess the relevance of available GeV irradiations, as well as fission, fusion and other irradiation activities
- Existing spallation materials groups?--few, small, internationally dispersed, and just getting started
- Compelling case to evaluate potential for joint research collaborations

EARLY GOALS (ACHIEVEMENTS ☑)

- Review and assess materials experience from existing spallation devices, as well as applicable information from fission, fusion and other irradiation programs
- Make preliminary target materials selections
- Begin new research immediately to obtain needed information on which to base design decisions and target lifetime estimates
- Create collaborations among the relatively few internationally dispersed spallation materials groups

NEW GOALS FROM EVOLVING KNOWLEDGE--EXAMPLES

- Begin to publish the wealth of results being developed in the spallation materials community
 - Since 2001 papers from this workshop have been published in special issues of Journal of Nuclear Materials
- Understand the unexpectedly important phenomenon of beam-pulse-induced cavitation erosion ?
 - Enormous progress in the experimental characterization of cavitation erosion, in predicting some features of the phenomenon, and in developing several mitigation measures
- Goals for future
 - We'll ask the question later in this talk and workshop

TWENTY YEARS AGO—IWSMT-1

TODAY VS FIRST WORKSHOP

- Similarities, 1996 and 2016
 - Small and internationally dispersed spallation materials groups
 - Thorough intermixing of basic work with applications and materials engineering
 - Strong interfacing with particle transport and mechanical engineering

TODAY VS FIRST WORKSHOP

- Differences 1996 and 2016
 - 1996--only a few groups, mainly in startup mode
 - 2016--experienced and highly productive groups
 - 2016--more researchers, more institutions and countries involved
 - IWSMT-1: much time discussing what was to be done; less time presenting hard knowledge
 - Today (& recent workshops): overwhelming productivity of experimental data and analyses; discussion time now suffers vs results presentation
 - Benefits from research interactions with high energy target groups outside spallation applications

TODAY VS FIRST WORKSHOP

- IWSMT-1
 - 5 countries, 11 institutions, 52 participants
- IWSMT-13
 - 9 countries, 25-30 institutions, 58 participants (List, 10/28/2016)
- "The faithful"--4
 - Y. Dai, S. Maloy, L. K. Mansur, M. Wendel
- "New Blood"--54

SPALLATION MATERIALS RESEARCH

- Spallation materials is now an important area of nuclear materials and radiation materials science
- In historical perspective it is quite a young field
- Greater opportunities are available for original work than in heavily raked areas
- Brilliant career choice for young researchers

OPPORTUNITIES IN SPALLATION MATERIALS SCIENCE

- Expand basic science of radiation effects to higher energy phenomena and more transmutations-radiation damage by GeV particles superimposed on MeV neutron damage
- Examples
 - At high energy transfers there is potential for large displacement cascades. Although large cascades usually break up into low-energy-like subcascades, new phenomena cannot be ruled out
 - Higher production of He and H
 - Many heavy transmutation products

OPPORTUNITIES IN SPALLATION MATERIALS ENGINEERING

- Materials issues triggered by pulsed high energy beams on liquid metal and solid targets
- Erosion of target structures caused by liquid cavitation
- Compatibility of liquid metals with structural materials during irradiation
- Unique combinations during irradiation of hyper high cycle fatigue, high cycle fatigue, low cycle fatigue, and high velocity flow of liquid metals

IMPACT

- Spallation materials continues to develop, especially by participants in these workshops, into an important field in radiation materials science and nuclear materials
- Wide ranging opportunities for researchers--more possibilities for original work
- IWSMT is the main forum for presentation of research and discussion of results
- Journal of Nuclear Materials is the home journal for spallation materials publication

FUTURE

- Imagination and initiative of participants will determine future of the field
- Increasing mutual benefit from collaborations with high power target groups
- Installation of dedicated irradiation facilities within target areas of high energy, high power accelerators
- New materials issues, not limited to higher damage rates, for even more ambitious higher power targets

MEETINGS

Meeting	Date	Location	Country
1	Apr 1996	Oak Ridge	U.S
2	Sep 1997	Ancona	Italy
3	Apr 1999	Santa Fe	U.S.
4	Oct 2000*	Schruns	Austria
5	May 2002	Charleston	U.S.
6	Nov 2003	Hayama	Japan
7	May 2005	Thun	Switzerland
8	Oct 2006	Taos	U.S.
9	Oct 2008	Hokkaido	Japan
10	Oct 1010	Beijing	China
11	Nov 2012	Ghent	Belgium
12	Oct 2014	Bregenz	Austria
13	Oct 2016	Chattanooga	U.S.
14	??? 2018	ТВА	

*First published in Journal of Nuclear Materials

THE IWSMT SERIES PUBLICATIONS

- L.K. Mansur, H. Ullmaier (Eds.), Proceedings of the International Workshop on Materials for Spallation Neutron Sources, Laboratory Report, CONF-9604151,1996.
- F. Carsughi, L.K. Mansur, W.F. Sommer, H. Ullmaier, in: Proceedings of the Second International Workshop on Spallation Materials Technology, Forschungszentrum Jülich Report, Jül-3450, Ancona, Italy, September 19–22, 1997.
- W.F. Sommer, H. Ullmaier, L.K. Mansur (Eds.), Proceedings of the Third International Workshop on Spallation Materials Technology, Los Alamos National Laboratory Report, LA-UR-00-3892, Santa Fe, New Mexico, April 29–May 4, 1999.
- Y. Dai, L.K. Mansur, G.S. Bauer, H. Ullmaier, S. Maloy (Eds.), Proceedings of the Fourth International Workshop on Spallation Materials Technology, Schruns, Austria, October 8–13, 2000, J. Nucl. Mater. 296 (2001) 1–335.
- L.K. Mansur, G.S. Bauer, Y. Dai, J.D. Hunn, S.A. Maloy, H. Ullmaier Eds.), Proceedings of the 5th International Workshop on Spallation Materials Technology (IWSMT-5), Charleston, South Carolina, USA, May 19–24, 2002, J. Nucl. Mater. 318 (2003) 1–389.

THE IWSMT SERIES PUBLICATIONS

- K. Kikuchi, M. Kawai, L.K. Mansur, G.S. Bauer, Y. Dai, S.A. Maloy (Eds.), Proceedings of the 6th International Workshop on Spallation Materials Technology (IWSMT-6), Hayama, Kanagawa, Japan, November 30–December 5, 2003, J. Nucl. Mater. 343 (2005) 1–387.
- Y. Dai, L.K. Mansur, K. Kikuchi, M. Kawai, G.S. Bauer, S.A. Maloy (Eds.), Proceedings of the 7th International Workshop on Spallation Materials Technology (IWSMT-7), Thun, Switzerland, May 29–June 3, 2005, J. Nucl. Mater. 356 (2006) 1–339.
- S.A. Maloy, L.K. Mansur, Y. Dai, M. Kawai, K. Kikuchi (Eds.), Proceedings of the 8th International Workshop on Spallation Materials Technology (IWSMT-8), Taos, USA, October 16–22, 2006, J. Nucl. Mater. 377 (2008) 1–306.
- K. Kikuchi, L.K. Mansur, M. Kawai, S.A. Maloy, Y. Dai (Eds.), Proceedings of the 9th International Workshop on Spallation Materials Technology (IWSMT-9), Hokkaido, Japan, October 19–24, 2008, J. Nucl. Mater. 398 (2010) 1–250.

THE IWSMT SERIES PUBLICATIONS

- Y. Dai, L.K. Mansur, K. Kikuchi, S.A. Maloy, X. Jia, M. Kawai (Eds.), Special Issue of the Tenth International Workshop on Spallation Materials Technology (IWSMT-10), Beijing, China, October 18–22, 2010, J. Nucl. Mater. 431 (2012) 1–234.
- J. Van den Bosch (Ed.), Special Theme Issue on Spallation Materials Technology. Selected papers from the Eleventh International Workshop on Spallation Materials Technology (IWSMT-11), J. Nucl. Mater. 450 (2014) 1-322
- Y. Dai, Special Theme Issue on Spallation Materials Technology, Selected papers from the Twelfth International Workshop on Spallation Materials Technology (IWSMT-12), J. Nucl. Mater. 468 (2016) 209-359.