13th International Workshop on Spallation Materials Technology 30 October – 4 November 2016, Chattanooga, US

Spallation materials R&D and application for Beam Intercepting Devices (BID) at CERN and the HiRadMat facility

F.-X. Nuiry & M. Calviani (CERN) EN Department, STI Group Targets, Collimators and Dumps section

Outlook

- Introduction to CERN accelerator complex
- n_TOF spallation target
- The HiRadMat facility
- AD-Target and HiRadMat 27 experiment
- The proposed Beam Dump Facility
- Long-term irradiation BLIP for high-Z material

Review of CERN's spallation targets

- CERN has a long and varied history of fixed target experiments, contributing to a diverse program of research
 - Essential part of the lab's scientific program
- Hadron physics (COMPASS, NA61...)
- Nuclear physics (ISOLDE)
- Neutron physics (n_TOF) Q
- Antimatter physics (AD) Q
- Proposed "Hidden particle" searches (BDF/SHiP) Q

CERN's accelerator complex

~10¹⁵ proton/year to LHC >10²⁰ protons/year to fixed targets

Ongoing projects on spallation target

- 1. New spallation target for n_TOF
- 2. Antiproton production target & related R&D
- For both, beam validation in 2018, installation in 2020, operation in 2021
- 3. Beam Dump facility
 - R&D project to be developed 2017-2019
- Materials of interest
 - Ti6Al4V, iridium, TZM, Pb + pure Si

n_TOF spallation target

n_TOF spallation target #2

- n_TOF facility, currently running a lead-based (bare core) spallation target for neutron production
- Wide neutron spectrum from 25 meV to 20 GeV (11 orders of magnitude)

- 7 years operation:
 - Average conductivity <0.15 μS/cm
 Oxygen content below 80 ppb
 Full continuous purification via redundant ion exchangers
 Purified N₂ flush via a Liqui-Cel[®] membrane
- Significant water contamination with
- ^L Pb spallation products

n_TOF spallation target #3

Two solutions being investigated

30 October 2016

- Ti6Al4V-contained pure Pb core (shrink fit + cast)
- Ta-cladded W core (HIPping) + Pb multiplier
- Critical objective is to guarantee thermal contact between the core material For POT of 2e20 (10 years of operation): • W: Ta-cladded W Ti6A-~1 DPA in the core contained Operational T ~100-200 °C Pb w/ 316L vessel Ti6Al4V: ~0.2-0.5 DPA Operational T <90-100 °C</p> ENTRANCE COVER - STAINLESS ST F.-X. INUIRY, IVI.

n_TOF material prototyping (I/II)

Ti6Al4V-contained Pb prototypes (1:4)
Pb cryogenic shrink fitting into Ti6Al cylinder

- First results encouraging, prototyping finalization by April 2017
- Possibility to add a beryllium stiffener to contain Pb plasticization is under study

n_TOF material prototyping (II/II)

- Ongoing orders with external companies to validate quality of the surface bonding
 - Non destructive + destructive tests
 - Synchrotron x-ray tomography (ESRF)
- Possible development in-house at CERN at a later stage
- Results are positive and convincing that the "recipe" is correctly executed

Intermezzo HiRadMat facility

CERN

12

HiRadMat

- Beam intensity increases in particle accelerators
 - ightarrow materials of near-beam equipment must be able to withstand the higher energy deposition/radiation
- Testing in an existing facility is difficult/inconvenient

Typically an accelerator is already used for physics

- Limited in access for installation works
- Limited in space along the beam line
- Missing infrastructure
- Limited in beam time

Request for a dedicated test facility:

HighRadMat - High Radiation to Materials
 Initiated and executed by R. Assmann and I. Efthymiopoulos

Facility target:

- provide irradiation area with beams similar to LHC injectior^{J. Wenninger}
- with scanning possibilities in intensity and spot size
- Designed for single-pulse experiments (long-term irradiation is excluded for operational aspects)

Applications:

• machine components, protection devices, targets, material studies, detector testing, electronics

Courtesy: A. Fabich (CERN EN/EA)

High-Radiation to Materials Dedicated facility for studying the impact of intense pulsed beams on material

HiRadMat

Beam Parameters

• Similar to LHC injection

Single pulses

	Protons	Heavy ions (Pb ⁸²⁺)		
Beam energy	440 GeV	173 GeV/u		
Bunches/pulse (max)	288	52		
Pulse intensity (max)	3 10 ¹³	4 10 ⁹		
Bunch spacing	25, 50, 75 or 150 ns	100 ns		
Pulse length (max)	7.2 μs	5.2 µs		
Beam spot	variable around 1 mm ²			
Pulse energy (max)	3.4 MJ	21 kJ		

Typically 100 pulses per experiment (10/year)

Allow personnel access to irradiation area

- Variable pulse intensity
- Variable bunch sequence
- Variable beam focus

CERN

14

For classical irradiation: GSI, BNL-BLIP, IRRAD, CC60, GIF, AREVA ...

Limitation on air activation

N Engineering Department

15

Maximum beam intensities

Eagerly waiting for nominal LIU intensities

- From 1.3e11 to 2e11 protons/bunch
- Required for testing in the regime of HL-LHC and beyond
- Only available after LS2 (beyond LS2)
- Required RF upgrade during LS2

HiRadMat allows focussing beam spots down to sub-millimetre range

• Primary beam windows and beam dump need to be verified for withstanding peak densities at smallest focussing (with smaller emittance)

Courtesy: A. Fabich (CERN EN/EA)

List of experiments

Status of experiments (Sept. 2016)

- 19 completed
- 5 approved
- 8 submitted

Target R&D		
Granular target technology		
RIB target		
RodTarg - AD target		
Collimation (LHC and injectors)		
Crystal collimation		
tunneling experiment		
Rotating collimator		
Transfer lines collimators (3x)		
SPS ejection septum protection		
material studies		
Prototyping (LHC and injector types)		
Detectors		
BLM - beam loss monitors		
Optical microphone		
Rpinst - RP Instrumentation R&D		
diamond detectors		
BTV beam monitors		
More		
GlassyC		
Beryllium specimen		
Cryogenic elements	1~10	

		Leading inst.	HRMT		
/ear	Acronym	(nat.)	index	Approval status	TNA status
2015	BLM2	CERN	19	Data taking	
2015	TPSG4-2	CERN	25	Cancelled	
2015	GlassyC	CERN	26	Completed	
2014	dBM	CZ	17	Completed	Granted
2015	BeGrid	UK	24	Completed	Granted
2017	SextSC	CERN		Approved SB	
2015	Jaws	CERN	23	Completed	Granted
2017	RotColl	CERN	21	Approved	
2015	RodTarg	CERN	27	Completed	
2017	CRY2	CERN	18	Approved SB	
2015	MicOpt	AT	20	Completed	Granted
2015	PTarg	UK	22	Completed	Granted
2015	FiberBLM	CERN		Submitted	
2016	TCDI	CERN	28	Data taking	
2017	MultiMat	CERN		Approved SB	Applied
2017	BTV	CERN	30	Completed	
2016	dBM2	CZ	33	Approved	Applied
2016	ESScoat	NO	34	Completed	Granted
2016	BTV2	CERN	32	Completed	Granted
2017	TDIcoat	CERN		Approved SB	
2016	CableStack	CERN	31	Approved	
2017	FlexMat	GSI		Submitted	Applied
2017	GlassyC2	CERN		Submitted	
2012	TISD	CERN	01	Completed	
2012	RADTOL	CERN	02	Cancelled	
2012	SLACRC1	CERN	03	Cancelled	
2012	BLM	CERN	04	Completed	
2012	VDWBR	CERN	05	Cancelled	
2012	TPSG4	CERN	06	Completed	
2012	TCDQ	CERN	07	Cancelled	
2012	TCDS	CERN	08	Cancelled	
2012	LCOL	CERN	09	Completed	
2012	WTHIMBLE	UK	10	Completed	
2012	DYNVAC	CERN	11	Cancelled	
2012	LPROT	CERN	12	Completed	
2012	LCMAT	CERN	14	Completed	
2012	RPINST	CERN	15	Completed	
2012	UA9CRY	CERN	16	Completed	

Courtesy: A. Fabich (CERN EN/EA)

Transnational Access

• EU funded support for external users on travel/subsistence

EuCARD-2 is co-funded by the partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453.

CERN

17

- More than 200 user*days at CERN enabled
- HiRadMat is work package in the recently approved FP7-Aries (2017-2021).

Applying for beam time

Regular meetings for daily operation:

- Experimental Area management with CERN groups
- Users meeting (with video conferencing)

Beam time application

Proposal submission to HiRadMat management

- Experiments are reviewed by the HiRadMat Scientific Board
 - Scientific interest of the experiment, feasibility and post-irradiation analysis
 - Expected results and publications to the interest of the scientific community
 - Approval validated by the HiRadMat Technical Board
 - Integration, operational and safety aspects, radiation protection and waste management

Accessible to the world-wide science community

AD-target and HiRadMat 27

AD-target

PS Proton Beam

- ▶ 26 GeV/c
- **POTs/year =** $2.1 \cdot 10^{18}$
- Current design (from 1989)
- Target core:
- ø 3 mm x 55 mm length rod of Iridium
- Core material is subjected to extreme thermo-mechanical loads
 - ΔT > 2000 °C, Tss = 150 °C
 - ~ 1 DPA/year in the core
- New design for the next 20 years of operation is on-going
 - Ta is considered as a strong core-material candidate

RaDIATE- activities of irradiation of Ir in the context of this project already started

AD-target

High Density Materials of Interest

- 1) Iridium:
 - Current target material and the highest density (23 g/cm^3)

2) Pure Tungsten:

- High density $(19.2 \text{ g/} cm^3)$ and strength. **R&D applicable to n_TOF, collimators, SHiP**
- **3)** W-L: Tungsten doped with 1-2% of lanthanum oxide (La_2O_3)
 - Improved mechanical properties at high temperatures, increase of recrystallization temperature.

4) Molybdenum:

- Lower density (10.3 g/cm^3) but high strength, less demanding conditions.
- 5) **TZM:** Molybdenum Alloy: Titanium-Zirconium-Molybdenum:
 - Stronger than pure molybdenum, higher recrystallization temperature and properties at high temperature. **R&D applicable to SHIP target**.

6) Tantalum

• High density $(16.7 \text{ g/} cm^3)$, very ductile compare to the rest of tested materials.

7) Cladded Target: W cladded in Ta

 Investigation of cladded solution to reduce pressure wave. R&D in cladding interface behavior of HIPing. Applicable to spallation targets

Experiment using the HiRadMat Facility

- 13 rods of high-Z materials impacted by 440 GeV/c beam
- Irradiation performed in a ramped way to obtain material response at intermediate state before reaching AD-Target conditions
- Experiment carried out in November 2015

http://cds.cern.ch/record/2064079?In=en

Design of the HRMT27 Targets

Change of Dynamic Response when Increasing Intensity

(~7 times less than the conditions reached in the AD-Target) Tungsten 1st pulse at 2.17e11 ppp in #6W1 6 2nd pulse at 2.16e11 ppp in #6W1 3rd pulse at 2.16e11 ppp in #6W1 4 2 Velocity [m/s] 2 Velocity [m/s] Measured 1.02 1.04 1.06 1.08 0.98 1 1.14 1.16 1.18 1.12 time [ms] Measured 1.01 1.015 1.02 1.025 1.03 1.035 time [ms]

Clear change fast damp of the radial wave

Three consecutive pulses of 2.15.10¹¹ ppp

- Max reached velocity in W is reduced down a 30% in the consecutive pulses in W
- **Distorted** radial wave could indicate that internal damage is already taking place

Material Responses at Higher Intensity

30 October 2016

Tantalum Targets: A Different Response

Three consecutive pulses of 4.95.10¹¹ ppp in Ta target

۲

•

Targets after the experiment

Hydrocodes, 29 May-3 June 2016

C.Torregrosa

Long-term: Beam Dump Facility

Beam Dump Facility (BDF)

- CERN is launching the study of a general purpose Beam Dump Facility on the CERN site (Prevessin)
- The experiment requires the realization of a high intensity target complex to house a heavy target capable of receiving up to 400 kW beam power (pulsed)
- See <u>SPS Beam Dump Facility</u> at the recent Physics Beyond Colliders workshop at CERN

BDF facility siting

- Beam power 355 kW, 1 s spill up to 2.56 MW
- Target must be as dense as possible to maximize production and reduce backgrounds
- High energy deposition per unit volume → significant heating due to beam (320 kW)
- Need of a challenging water cooling system
 - ■~200 m³/h, 20 bar
- Material damage due to cumulated radiation

The proposed BDF target

- 120 cm long, hybrid configuration
- 60 cm TZM (4 λ) + 60 cm W (6 λ), Ta cladded
- 40 x 40 cm² transversal size
- Target core in a double walled SS container

BDF Target Complex

- Target is located 15 meters underground
- Cast-iron hadron absorber encloses production target (460 m³)

BDF Radiation protection

- Prompt dose rate under control in accessible areas
- Dump residual dose rate ~10 Sv/h after 1 week
 - Handling of the target an outstanding item
- Target station design adapted to configure the bunker for a different dump design

BDF prospects

- Comprehensive Design Report requested by CERN management by end 2019
- Focus on:
 - Target/dump design and reliability (including prototype beam test in 2018), including radiation long-term testing
 - Optimisation of target complex design
 - Prototyping of He-vessel purification system design

BLIP long-term tests within RaDIATE

- Radiation tests foreseen at BLIP (0.5-1 DPA cumulative)
 - TZM samples → BDF target & AD-target
 - Iridium → AD-target
 - CuCrZr \rightarrow Internal SPS high intensity dump (TIDVG)
 - Silicon → intermediate density absorber material (LHC absorbers)
 - Flexible graphite → present material for LHC main dump plus shock damper for AD-target
- See P. Hurh presentation on RaDIATE

Conclusions

- Significant activity on development of high-Z spallation targets/dump active at CERN since around 2 years
- R&D on high-Z material include mechanical tests, dynamical test with proton beams and long-term radiation damage tests
- Projects on the short and medium terms will be challenging

Thanks

Courtesy: A. Fabich (CERN EN/EA)

CERN

42

HiRadMat

- Beam intensity increases in particle accelerators
 - \rightarrow materials of near-beam equipment must be able to withstand the higher energy deposition/radiation
- Testing in an existing facility is difficult/inconvenient Typically an accelerator is already used for physics
 - Limited in access for installation works
 - Limited in space along the beam line
 - Missing infrastructure
 - Limited in beam time

Request for a **dedicated** test facility:

HighRadMat - High Radiation to Materials
 Initiated and executed by R. Assmann and I. Efthymiopoulos

Facility target:

- provide irradiation area with beams similar to LHC injection regime
- with scanning possibilities in intensity and spot size
- Designed for single-pulse experiments (long-term irradiation is excluded for operational aspects)

Applications:

• machine components, protection devices, targets, material studies, detector testing, electronics

29/9/2016

A. Fabich

EN Engineering Department