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Credibility of ion simulation requires that ions reproduce major facets of
neutron-induced behavior for both fcc and bcc iron-base alloys.



Recently conducted studies on bcc iron-base alloys appear
to be successful in reproducing neutron-induced behavior

 Linear after incubation swelling law

* Post-transient swelling rate of ~0.2%/dpa

* Increase in transient duration with increasing dpa rate

* Demonstrating strong influence of injected interstitial
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Recently conducted studies on bcc iron-base alloys appear
to be successful in reproducing neutron-induced behavior

 Linear after incubation swelling law
* Post-transient swelling rate of ~0.2%/dpa
* Increase in transient duration with increasing dpa rate

 Demonstrating strong influence of injected interstitial
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 Linear after incubation swelling law
* Post-transient swelling rate of ~0.2%/dpa
* Increase in transient duration with increasing dpa rate

 Demonstrating strong influence of injected interstitial

—O—T91 ECAE
—=—T91
404 —-—- SRIM lon Range 40__ -8- T91 ECAE
35 NP SRIM dpa 35 -@- T91
g\°/30j 530’_ 0.2%/dpa
825- 825- 0.1%/dpa
D 20- D 20-
s 2
9 15- @ 45
8 | S
2 104" 2 10
51 5
04 e I
0 200400600 800 1000 1200 1400 1600 0 100 200

Depth (nm)

Was comparable success attained in earlier studies for fcc iron-base alloys?




* This discussion is confined only to self-ion
irradiation to simulate neutron-induced swelling.

* A tale of two generations of “ion bombardiers”
and the gulf between them!

My generation and ...... the current generation

* Earlier groups led by Johnston, Kulcinski,
Spitznagel, Bleiberg, Mansur, Packan-Farrell,
Laidler ...........



Some history concerning ion irradiation in USDOE
National Laboratory programs

* Void swelling at ~1% was discovered in U.K. in late 1960s.
* USA confirmed significant swelling (10-12%) in EBR-II.
* Large irradiation programs were initiated in EBR-Il and FFTF.

* Neutron data was being accumulated in EBR-Il at only 10-15
dpa every 18 months, mostly on fcc Fe-Cr-Ni alloys.

* Charged particle irradiations were employed to speed up data
generation ........ 1970s and 1980s, along with neutron-charged
particle inter-correlation programs.
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 When neutron data became much more available, charged
particle irradiation was deemphasized.

* During 1990s and early 2000s charged particle irradiation was
mostly of university interest.

* In 2010s USDOE expressed new strong support of charged
particle simulation, mostly on bcc Fe-Cr base alloys and their
ODS variants.



Something changed in the period when USDOE did not
have a strong interest in charged particle simulation.

* Inter-correlation programs had shown that self-ion irradiation
produced the most reproducible results at high enough dpa
levels to generate swelling.

e Calculation of dpa vs. depth profiles were provided in the early
period (IONDOSE, BRICE, EDEP-1)

* In the later period dpa vs. depth curves were provided by TRIM
and SRIM.

* All codes produce essentially identical results, but ...
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During the interim the input energy loss parameters were
reevaluated, especially for mid-Z elements (Fe, Cr, Ni, Cu, V,...... ).

The predicted energy deposition rates decreased by 22-33%.

The ranges increased correspondingly and the dpa values mostly
decreased.



Something changed in the period when USDOE did not
have a strong interest in charged particle simulation.

Inter-correlation programs had shown that self-ion irradiation
produced the most reproducible results at high enough dpa
levels to generate swelling.

Calculation of dpa vs. depth profiles were provided in the early
period (IONDOSE, BRICE, EDEP-1)

In the later period dpa vs. depth curves were provided by TRIM
and SRIM.

All codes produce essentially identical results, but ...

During the interim the input energy loss parameters were
reevaluated, especially for mid-Z elements (Fe, Cr, Ni, Cu, V,...... ).

The predicted energy deposition rates decreased by 22-33%.

The ranges increased correspondingly and the dpa values mostly
decreased.

The early experiments on fcc metals and fcc iron-base alloys ....
and the perceptions that they produced were never reevaluated.

As a consequence, the full impact of the injected interstitial in
self-ion irradiation of fcc alloys was not fully appreciated.



All of the experiments to be shown hereafter were performed before
TRIM and SRIM were available.

There were a number of previous, independently produced codes (BRICE,
EDEP, IONDOSE, etc.) and all required input parameters that had not yet
been measured, but were calculated from the LSS model.

Note that all earlier cited studies used Ni ions, which travel farther than
Fe ions at a given energy.

SRIM values of peak depth are much larger than EDEP values.

Blue points are peak dpa

- positions used in earlier studies.
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14 MeV Ni, 8.1 MeV Al, 5 MeV C, all producing
damage peaks at ~2 microns
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What criteria can we use to establish a credible
relationship of ion simulation to neutron experience?

* Does self-ion simulation reproduce the basic sweIIin%.Iaw observed
during neutron irradiation of iron-base alloys .... ...... inear after
incubation (“bilinear”)

* Canion simulation reproduce the post-transient steady-state
swelling rates of

~1%/dpa for fcc iron-base alloys
~0.2%/dpa for bcc iron-base alloys

* Does self-ion irradiation reproduce the major trends of swelling
with respect to major compositional, fabricational and
environmental variables?
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Let’s look at the most famous example on the
compositional dependence of Fe-Cr-Ni ternary alloys.
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What criteria can we use to establish a credible
relationship of ion simulation to neutron experience?

* Does self-ion simulation reproduce the basic sweIIin%OIaw observed
during neutron irradiation of iron-base alloys .... ...... inear after
incubation (“bilinear”)

* Canion simulation reproduce the post-transient steady-state
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Ferritic binary alloy swells during 5 MeV Ni* irradiation at
lower temperatures and at much lower rates than do

ternary austenitic alloys
W.G. Johnston et al., 1983
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% SWELLING AT 140 dpa

lon irradiation forecast the different swelling of bcc
Fe-Cr and fcc Fe-Ni-Cr alloys

Johnston et al., 1983 Surface of Uranus 50 duplex alloy
140 dpa 5 MeV Ni* ions irradiated at 625°C to 140 dpa
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Swelling of Fe-15Cr model ferritic alloy at

550°C using 5 MeV Ni* ions
W. G. Johnston and coworkers, 1979
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Johnston used both microscopy and
step-height measurements.

Empirical value of ~60A of height for
each 1% swelling at the peak swelling
position.

Swelling rate appears to be less than
the expected value of ~0.2%/dpa.

SRIM-calculated doses would be much
smaller and the swelling rate would be
higher.



Nuclear stopping power (MeV/um)

Comparison of ion-induced dpa predictions of EDEP
and SRIM codes, courtesy of Roger Stoller, ORNL
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Between 1975 and 1986 the EDEP
predictions changed significantly.

1986 EDEP prediction of Eqn. 4 most
closely matches SRIM-13 prediction.

The difference arises not in the
mechanics of each code, but in the
energy loss equations that are input to
the code.

SRIM uses Monte Carlo and takes a lot
of time, but previous codes were
much quicker and used analytical
expressions, producing smooth curves.

What has changed in the energy loss descriptions over this time period?



Z, oscillation in electronic stopping power
Sugiyama, J. Phys. Soc. Japan, 50, 929 (1981)
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Experimental data from Hvelplund and Fastrup, Phys. Rev. 165, 408 (1968)
LSS formula from Lindhard, Scharff and Schiott, K. Dan. Vidensk. Selsk. Mat. Fys. Medd, 33, 14 (1963)
Firsov formula from Firsov, Soviet Phys. JETP 9, 1076 (1959).



Stopping power oscillation

* Oscillation exists for both projectile (Z,) and target (Z,)

* Oscillation exists for both nuclear and electronic stopping powers
* Oscillation amplitude increases with increasing projectile energy
e Caused by quantum mechanics of the shell structure

» Atomic radius is oscillating with increasing Z

» Higher Z may have “smaller” atomic radius

» Smaller radius leads to higher electron screening effect

» Higher screening effect means less effective nuclear charge
in collision
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It is important to note that most ion irradiations in the 1970-1980s
used nickel ions and therefore had the largest overestimates of
electronic and nuclear stopping powers.



Stopping power oscillation

* Oscillation exists for both projectile (Z,) and target (Z,)

* Oscillation exists for both nuclear and electronic stopping powers
* Oscillation amplitude increases with increasing projectile energy
e Caused by quantum mechanics of the shell structure

» Atomic radius is oscillating with increasing Z

» Higher Z may have “smaller” atomic radius

» Smaller radius leads to higher electron screening effect

» Higher screening effect means less effective nuclear charge
in collision

It is important to note that most ion irradiations in the 1970-1980s
used nickel ions and therefore had the largest overestimates of
electronic and nuclear stopping powers. Ni on Ni is worst case!




Swelling of Fe-15Cr model ferritic alloy at

550°C using 5 MeV Ni* ions
W. G. Johnston and coworkers, 1979
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Johnston used both microscopy and step-
height measurements.

Empirical value of ~60A of height for each
1% swelling at the peak swelling position.

Swelling rate appears to be less than the
expected value of ~0.2%/dpa.

Doses were recently reevaluated by Garner
and Wang using SRIM instead of EDEP.



Swelling of Fe-15Cr model ferritic alloy at

550°C using 5 MeV Ni* ions
W. G. Johnston and coworkers, 1979
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Use of SRIM-calculated doses shortens the transient regime of swelling and
reproduces the ~0.2%/dpa swelling rate observed in neutron irradiations.



Let’s re-examine four old data sets on depth-
dependent swelling of fcc iron-base alloys in light of
the new perception of dpa damage deposition curves.

All experiments used Ni ions

 Annealed 321 SS at 5 MeV (GE)
Multiple thinning to reach different depths
* Annealed Fe-15Cr-25Ni at 3.5 MeV (WARD)
HVEM and stereomicroscopy
* 20% cold-worked 316 at 5 MeV (WARD)
HVEM and stereomicroscopy
* 20% cold-worked 316 SS irradiated first in EBR-1I (GE, ORNL)

and then further irradiated with Ni ions to higher dose at
four higher temperatures.




Let’s re-examine four old data sets on depth-
dependent swelling of fcc iron-base alloys in light of
the new perception of dpa damage deposition curves.

All experiments used Ni ions

 Annealed 321 SS at 5 MeV (GE)
Multiple thinning to reach different depths
* Annealed Fe-15Cr-25Ni at 3.5 MeV (WARD)
HVEM and stereomicroscopy
* 20% cold-worked 316 at 5 MeV (WARD)
HVEM and stereomicroscopy
* 20% cold-worked 316 SS irradiated first in EBR-1I (GE, ORNL)

and then further irradiated with Ni ions to higher dose at
four higher temperatures.

There are many more examples, all leading to the same conclusions
concerning the increased credibility of older ion irradiation experiments.
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Injected interstitial
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If swelling is plotted vs. local dpa (EDEP-1), can we see the
~1%/dpa swelling rate that is characteristic of austenitic alloys?
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The swelling “loop” is an artifact of
an incorrect dpa vs depth curve

Swelling rate of ~1%/dpa is not
observed on any portion of the loop.



If swelling is plotted vs. local dpa (EDEP-1), can we see the
~1%/dpa swelling rate that is characteristic of austenitic alloys?
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The characteristic swelling rate of ~1%/dpa is seen in the first seven measurements.

The three back-side measurements reflect the growing influence of injected
interstitial and increasing dpa rate with increasing depth.



REFERENCE: Rowglilfe, A F., Diamond, S., Bleberg, M. L, Sptasagel J., and
Choyke. J.. “Swelling and [rradiation Induced Microstructural Changes In
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Extraction of swelling data used HVEM over entire
ion range, reducing scatter and depth uncertainties.
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Comparison: two interpretations of 5 MeV ion irradiation data on CW 316 stainless
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Peak damage dose of 90 dpa was
calculated with EDEP to be ~1000 nm.

Swelling peaks at peak dose position.
Injected interstitial influence was

either absent or was quickly
overcome.
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calculated with EDEP to be ~1000 nm.

Swelling peaks at peak dose position.
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either absent or was quickly
overcome.

Peak damage dose was calculated with
SRIM to be 47 dpa at ~1700 nm.

Injected interstitial effect is very strong
to suppress void nucleation.

Assigned dpa levels drop strongly and
post-transient swelling rates increase in
region far from injected interstitial.



Comparison: two interpretations of 5 MeV ion irradiation data on CW 316 stainless
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It is difficult to extract any
estimate of local swelling rate
from this plot.

Data taken far from injected
interstitial implies a post-transient
swelling rate of ~1%/dpa, similar to
that observed in neutron irradiation.
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that observed in neutron irradiation.

Beyond peak swelling shows
increasing influence of injected
interstitial and higher dpa rate.
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IMPACT OF THE INJECTED INTERSTITIAL ON THE CORRELATION OF CHARGED

PARTICLE AND NEUTRON-INDUCED RADIATION DAMAGE
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Fig. 1. Comparison of damage profile curve and swelling
determined at 90 dpa by Diamond and coworkers for the ADIP
Alloy [12].

[12] S. Diamond, M.L. Bleiberg, .M. Baron, R. Bajaj and
R.W. Chickering, in: Radiation Effects and Tritium Tech-
nology for Fusion Reactors, CONF-750989 (Gatlinburg,
TN, October 1-3, 1975) p. 1-207.

Swelling and dpa curve have
peaks in close proximity.

No indication of injected
suppression zone.
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Fig. 2. Swelling versus dose profiles for the ADIP alloy, derived
from fig. 1 [12].

Extraction of swelling data used HVEM over
entire ion range, reducing scatter and depth
uncertainties.
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Fig. 2. Swelling versus dose profiles for the ADIP alloy, derived
from fig. 1 [12].

Extraction of swelling data used HVEM over
entire ion range, reducing scatter and depth
uncertainties.



Original interpretation of 3.5 MeV Ni ion irradiation data on Fe-15Cr-25Ni
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Peak damage dose of 90 dpa was
calculated with EDEP to be ~700 nm.

Swelling peaks at peak dose position,
confirming our expectation at that time.

Injected interstitial influence was either
absent or was quickly overcome.

Plot swelling vs. local dpa level.

Swelling peaks at ~700°C due primarily to
having the shortest incubation period.

Maximum post-transient swelling rate is
on the order of ~0.20%/dpa, much lower
than the ~1%/dpa observed in neutron
irradiation.
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Comparison: two interpretations of 3.5 MeV ion irradiation data on Fe-15Cr-25Ni
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Original interpretation was based on a
dpa curve that was much shorter in
range than would be calculated by SRIM.

One consequence is that the calculated
dpa levels were too high.

Correct SRIM calculations yield much
lower dpa levels and therefore higher
swelling rates per dpa.

Data taken far from injected interstitial
implies a post-transient swelling rate of
~1%/dpa, similar to that observed in
neutron irradiation.



Charged particle irradiation of neutron-
preconditioned 316 St?oi%lé§§§6$$§i%led in EBR-Il to 46.5 dpa at

585°C followed by 4 MeV Ni ion irradiation

Lauritzen et al. 1979,
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585°C followed by 4 MeV Ni ion irradiation

Lauritzen et al. 1979, modified by Garner 2016
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It appears that use of more modern energy loss
parameters in SRIM significantly improves the
credibility of earlier experiments.

* Other earlier-generation studies not shown in this
presentation also confirm the improved credibility of
revised interpretations based on SRIM-calculated energy
deposition values.

* Let’s look at a recently conducted study on austenitic 304
stainless steel.

* Will we see the same features of injected interstitial
suppression, remnant swelling peaks and neutron-typical
post-transient swelling rate?



3.5 MeV Fe irradiation of two variants of 304L stainless steel

to 60 peak dpa at 500°C (submitted to NIMB, 2016)
C. Sun, F. A. Garner, Jing Wang, L. Shao, X. Zhang, S. A. Maloy
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3.5 MeV Fe irradiation of two variants of 304L stainless
steel to 60 peak dpa at 500°C (submitted to NIMB, 2016)
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Conclusions

* | have shown only a fraction of the earlier work, but the
overall effort yields very satisfying results when reevaluated
using modern energy deposition values in SRIM.

* The net result of this reevaluation is that studies conducted
much earlier were only deficient in the values of dpa
calculated for each swelling datum.

* It now appears that self-ion bombardment can predict the
steady-state swelling rates of both fcc and bcc iron-base alloys.

* There is some additional support for the effect of increasing
dpa rate to extend the transient regime of swelling.

* The injected interstitial suppression of void nucleation is
equally powerful in both fcc and bcc iron-base alloys.

* Bottom line: ion simulation of neutron-induced void swelling is
more credible than previously realized.



Some cautions

* In comparing older data with your new results, most
older swelling data points will require reevaluation of
the dpa values.

e Additionally, many of the earlier experiments used
displacement threshold energies of 25 or 33 eV,
requiring further modification to allow comparisons
between older and newer experiments.

* There are still smaller but significant differences
between dpa curves produced by various generations
of TRIM and SRIM, requiring additional caution in
comparison.
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For your entertainment and perhaps interest, after your seminar | was able to obtain two
versions of EDEP on line. One is the original version from Manning and Mueller's 1874 paper
with some cormrections made in 1875, and the other is a 1886 update with what they called better
stopping powers. Surprisingly, it was not too bad of a job to get these old codes to compile and
run so | could make a simple comparison with SRIM-2013 for Fe into Fe. The results are shown
on the next page. For Fe ion energies up to about 6 MeV EDEP-5 is pretty consistent with
SRIM-2013, above that energy SRIM falls between EDEP-1 and EDEP-5.
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Comparison of ion and neutron results on bcc Fe-Cr

binary alloys
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Both techniques show bilinear swelling behavior with
~0.2%/dpa steady-state swelling rate for bcc iron alloys.



