

Post irradiation examination of the MEGAPIE samples at JAEA(2)

<u>S. Saito^a</u>, K. Kikuchi^b, K. Suzuki^c, Y. Hatakeyama^c, S. Endo^c, M. Suzuki^c, N. Okubo^d, K. Kondo^d

^aJ-PARC Center, JAEA ^bFrontier Research Center, Ibaraki Univ. ^cDept. of Fukushima Technology Development, JAEA ^dNuclear Science and Engineering Center, JAEA

Content

- **1. JAEA Samples**
- 2. Experimental
- 3. PIE results
- -SP tests
- -Three-point bending tests
- -Cross sectional observation
- -Microstructural observation

4. Summary

MEGAPIE

- The world's first megawatt-class lead-bismuth target, MEGAPIE (MEGAwatt Pilot Experiment) was successfully finished in 2006.
- The target was dismantled and post irradiation examination (PIE) samples were prepared at PSI hot-lab.
- The samples were shipped to each institutions including JAEA and PIE works have being performed.

1. JAEA Samples (1)

JAEA samples : Beam window Flow guide tube (FGT) All samples were prepared without LBE.

November 1, 2016

1. JAEA Samples (2)

Flow guide tube (FGT) (H04-2)

Material: SS316L

1. JAEA Samples (3)

Dimensions of the specimens

Tensile specimen

	Beam window	Flow gu		
	H02-1	H03-2	H04-2	
	T91	SS3	Total	
Tensile	9	8	23	
ТЕМ	12	10	8	30
Bend bar	-	-	4/8	8
OM/SP	2 (Spitze)	0	2/4	6
Total	23	18	26	<u>67</u>

Spitze:triangle part

2. Experimental (1) -PIE flow-

November 1, 2016

Experimental (2) -SP test -

Test conditions of SP test.

- Materials :T91, SS316L
- Specimen size : 8 mm X 8 mm X 0.5 mmt
 - Steel ball : φ2.4 mm (2.381 mm, 3/32inch)
- RT in air
- Cross-head speed: 0.1 mm/min. (6 X 10⁻⁴/s)
- Measurement : Load, Displacement

2. Experimental (3) -SP test-

November 1, 2016

2. Experimental (4) -Three point bending test-

Test conditions of bending test.

- Materials :SS316L
- Specimen size : 1.4 mm X 2.0 mm X 16 mm (without notch)
- Span : 13 mm
- RT in air
- Cross-head speed: 0.5 mm/min. (3 X 10⁻³/s)
- Measurement : Load, Displacement

IWSMT-13

2. Experimental (5) - Cross sectional observation-

Sample preparation

- The specimens were cut and mounted in resin.
- After mechanical polishing, the cross section were etched.
- Solution ;

Ethanol 100 ml, Picric acid $2 \sim 4$ g, Hydrochloric acid $2 \sim 5$ ml for T91 Hydrochloric acid 25 ml, Nitric acid10 ml, Glycerin 15 ml for SS316L

SEM/Optical observation

- SEM : X50~X2000
- OM : X50, X400
- Inner side and outer side

2. Experimental (6) - Microstructural observation-

Table. List of MEGAPIE samples polished.

TEM disk	Group No.	ID	dpa	Irrad. Temp [ºC]	Schedule
Beam window,	H02-1-14-A	TE04 – 07	0.81	252	2013
T91	H02-1-15-A	TE14 – 17	1.98	259	2014
	H02-1-15-B	TE24 – 27	0.94	251	2017~
Flow guide tube, 316L SS	H03-2-C1-1	SE33, 34	1.36	316	2017~
	H03-2-C1-2	SE44 – 47	1.46	311	2013
	H03-2-C1-3	SE54 – 57	1.57	308	2014
	H04-2-C1-1	SE64 – 67	0.19	341	2014
	H04-2-C1-1	SE74 - 77	0.16	335	2017~

- Sample preparation and TEM observation
 - At the Waste Safety Testing Facility (WASTEF) of JAEA
 - Mechanical polishing and twin jet electro-polishing
 - Solution ; 95 vol.% Acetic acid + 5 vol.% Perchloric acid (conc.60%)
 - FE-TEM ; Hitachi HF-2000 (replaced with new HF3300 in FY2016)

(RED: Observed)

3. PIE results -SP tests (1)-

3. PIE results -SP tests (2)-

<u>T91</u>

No.	dpa	T _{irr.} (°C)	T _{test} (℃)	Max. load, P _{max} (N)	SP fracture energy (J)	Deflection at fracture, δ* (mm)	Equivalent fracture strain, ε _{qf}	Estimated J _{IC} (kJ/m ²))
UTP04	0	-	24	1814	2.78	2.22	1.64	453
UTP07	0	-	26	1800	2.52	2.06	1.41	374
TP01	(0.9~1)	(260)	26	1692	1.30	1.19	0.47	49.6
TP02	(0.9~1)	(260)	25	2028	2.08	1.61	0.87	186

Empirical relation; $\epsilon_{qf} = \ln(t/t_0) = \beta$ (δ^*/t_0)², $\beta = 0.09$, $t_0 =$ Initial specimen thickness Estimated J_{IC}=345 ϵ_{qf} -113 (M. R. Bayoumi, et.al. (1983))

- SP fracture energy, deflection at fracture and estimated $J_{\rm IC}$ value decreased.
- Dispersion of the irradiated data.

3. PIE results -SP tests (3)-

- Irradiation hardening and degradation
 of ductility
- Max load are almost same.

3. PIE results -SP tests (4)-

SS316L (FGT), RT tests

No.	dpa	T _{irr.} (°C)	T _{test} (°C)	Max. load, P _{max} (N)	SP fracture energy (J)	Deflection at fracture, δ* (mm)	Equivalent fracture strain, ε _{qf}	Estimated J _{IC} (kJ/m ²))
USP05	0	-	21	1998	2.83	2.46	2.01	(582)
USP07	0	-	26	1935	2.59	2.33	1.88	(535)
SO86	0.19	337	27	1945	2.24	2.07	1.67	(465)
SO96	0.16	332	27	2015	2.28	2.06	1.47	(394)

• SP fracture energy, Deflection at fracture decreased.

3. PIE results -Bending tests -

- Size of cross section are different.
- Irradiation hardening are observed.
- Cracks were not observed.

3. PIE results - Cross sectional observation (1)-

- Cracks inside of the pits
- No cracks around the pits.

3. PIE results - Cross sectional observation (2)-

FGT (SS316L, SO85)

Inner surface (SEM)

20µm

- No evidence of corrosion
- Cracks were not observed for both side.

3. PIE results - Microstructure observation (1)-

Typical irradiation microstructure of T91

BF image with g=011 near z=111

- 0.81 dpa : carbides and network dislocations
- 1.98 dpa : dislocation loops.

3. PIE results - Microstructure observation (2)-

Typical irradiation microstructure of 316L SS

Rel-rod streak image

- 0.19 dpa : network dislocations and black dot defect clusters
- 1.57 dpa : coexistence of black dots and dislocation loops (Frank loops)

4. Summary

Mechanical property tests

- SP tests (φ2.4 mm) and the three point bending tests (without notch) on the samples cut from MEGAPIE target were performed and irradiation effects were investigated.
- SP fracture energy, deflection at fracture and estimated J_{IC} value at RT decreased by the irradiation.
- After the bending tests, no cracks were observed for SS316L samples.

Cross sectional observation

- BW (T91); Cracks inside of the pits, no cracks around the pits.
- FGT (SS316L); At surface, corrosion and cracks were not observed.

Microstructure observation

 Irradiation microstructures of T91 and ss316L were investigated by TEM and different microstructures were observed.

Future plan

SP test

- Cross sectional and fracture surface observation by SEM.
- Development of test technique for SP test with Φ1.0 mm steel ball to obtain SPDBTT. Specimens will be prepared from Φ3.0 mm disks and grip part of tensile specimens.
- Temperature control system (-196°C ~ 250°C)
- Existing testing machine, JMTR-HL (JNM283-287, T. Ishii et al., (2000))

Three point bending test (with notch)

- Development of notching device and test technique for fracture toughness test.
- Specimen; SS316L, T91(Frame)
- Testing machine was installed in WASTEF.

Microstructure observation

• TEM observation for rest samples and detailed observation will be conducted by brand-new TEM.

PIE -Schedule -

Year	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
	MEG	APIE				ST	P-8		TĘ	F-T		
LBE capsule dismantling				Prepar	ration		Disma	ntling		Disma Samp	ntling ar le prepa	nd iration
Gas analyses					Prepa	ration	STIP-8	³ →		TEF-T		
Tensile test	MEGAPIE			Test technique in LBE			STIP-8		TEF-T	TEF-T		
Fracture toughness test		MEGA	PIE	Test technique in LBE			STIP-8		TEF-T	\rightarrow		
SP test	MEGA	IEGAPIE							STIP-8	}	•	TEF-
Fatigue test			Sampl	Test teo e prepa	Test technique in LBE			STIP-8	}		TEF-T	
SEM/EDS	MEGA	IEGAPIE >						STIP-8	³ >	•		TEF-
TEM	MEGAPIE						STIP-8	}		TEF-T		

Thank you!