

13th International Workshop on Spallation Materials Technology 30.10. – 4.11.2016

Annealing effect on the microstructure and hardness of irradiated tungsten

Barbara Horvath¹, Yong Dai¹, Yongjoong Lee² ¹ Paul Scherrer Institute

² European Spallation Source

- Introduction
- Sample preparation for (un)irradiated tungsten
- Microstructural evaluation of
 - Unirradiated W
 - Irradiated W
- Effect of annealing on irradiated W
- Effect of radiation damage amount on microstructure

- The European Spallation Source (ESS) will be the world's most powerful neutron source facility built in Lund, Sweden
- A number of target options were reviewed for the European Spallation Source → Pure tungsten was chosen as the spallation material
- Advantages:
 - environmentally friendly compared to other target materials
 - its use in helium environment avoids corrosion issues related to water cooling
- Disadvantages:
 - low ductility
 - high ductile-to-brittle transition temperature

[1] europeanspallationsource.se

- Introduction
- Sample preparation for (un)irradiated tungsten
- Microstructural evaluation of
 - Unirradiated W
 - Irradiated W
- Effect of annealing on irradiated W
- Effect of radiation damage amount on microstructure

Sample preparation for (un)irradiated tungsten

In order to examine the irradiated tungsten samples safely the following method was used:

- 1. Lamella with focused ion beam (FIB):
 - The reduction of the sample size reduces the activity
 - Sample lifted out internally by a micromanipulator 8x8 µm² and 200 nm thick lamella is milled.

FIB sample development

TEM grid:

Creating a TEM sample with FIB:

- a) etching around the sample,
- b) transferring the sample to the TEM grid, thinning the membrane

Sample preparation for (un)irradiated tungsten

In order to examine the irradiated tungsten samples safely the following method was used:

- 1. Lamella with focused ion beam (FIB):
 - The reduction of the sample size reduces the activity
 - Sample lifted out internally by a micromanipulator 8x8 µm² and 200 nm thick lamella is milled.

2. Flash electrochemical polishing:

- The lamella is thinned down to approx. 60 nm
- Remove the FIB induced damages on the surface.

The effect of FIB on the lamella

TEM image of a lamella

Before polishing

After polishing

The ion impact on the specimen surface leads to

- formation of a damaged layer that may extend 10s of nm into the material
- Ga implantation into the bulk

Flash electrochemical polishing

Inital lamella thickness: 200-300nm

Factors for polishing:

- Polishing Voltage
- Polishing Temperature
- Polishing solution type and percentage: NaOH 0.5-1% solution.
- TEM grid material: Mo / Cu
- Welding material for lamella to grid: C / Pt

• Polishing time: 0.001 – 0.5 second.

Flash electrochemical polishing

So which etching parameter should be changed...? ... and which direction?

20 µm

Flash electrochemical polishing

Flash electrochemical polishing a TEM lamella

Flash electropolishing

before and after flash electropolishing

Flash electropolishing conditions

Unirradiated W	Irradiated W	
Cu grid, Pt weld	Cu grid, Pt weld	
2 °C	9 °C	
0.5% NaOH	0.5% NaOH	
23 V	23 V	

Sample preparation for (un)irradiated tungsten

In order to examine the irradiated tungsten samples safely the following method was used:

- 1. Lamella with focused ion beam (FIB):
 - The reduction of the sample size reduces the activity
 - Sample lifted out internally by a micromanipulator 8x8 µm² and 200 nm thick lamella is milled.
- 2. Flash electrochemical polishing:
 - The lamella is thinned down to approx. 60 nm
 - Remove the FIB induced damages on the surface.
- 3. Transmission Electron Microscopy:
 - Bright field (BF) and weak-beam dark field (WBDF) imaging conditions were used at (g, 6g), (g, 5g) or two-beam; (g=110).

- Introduction
- Sample preparation for (un)irradiated tungsten
- Microstructural evaluation of
 - Unirradiated W
 - Irradiated W
- Effect of annealing on irradiated W
- Effect of radiation damage amount on microstructure

Unirradiated tungsten

Number of dislocation lines crossing unit area in the sample

 $r_D = (n/L^2) m^{-2}$

Area of examination: 33.1 μm²

Dislocation density:

 $1.6 \times 10^{13} \text{ m}^{-2}$

Low magnification micrographs of the dislocation structure

Irradiated tungsten

Irradiation conditions	5-SSB-W-16-1-R5
Dpa	1.42
He (appm)	37
T _{irradiation}	80 °C

Bending test at 450 °C previously

Effect of irradiation

Dislocation density: 1.6 \times $10^{13}\,m^{\text{-}2}$

Dislocation density: $1.9 \times 10^{13} \text{ m}^{-2}$ Cluster density: $3.2 \times 10^{23} \text{ m}^{-3}$

Effect of irradiation

Dislocation density: $1.6 \times 10^{13} \text{ m}^{-2}$

Dislocation density: $1.9 \times 10^{13} \text{ m}^{-2}$

Cluster density: $3.2 \times 10^{23} \text{ m}^{-3}$

- Introduction
- Sample preparation for (un)irradiated tungsten
- Microstructural evaluation of
 - Unirradiated W
 - Irradiated W
- Effect of annealing on irradiated W
- Effect of radiation damage amount on microstructure

Effect of annealing on irradiated tungsten

Evaluate the microstructure and hardness change on 1.42 dpa irradiated W sample after annealing

Annealing temperature:

- 500 °C
- 600 °C
- 800 °C
- 900 °C

Duration: 1 hour

Counting clusters according to their sizes

Before annealing:

After annealing:

Counting clusters according to their sizes

Counting cluster defects

	Cluster defect density [pieces/m ³]	
No anneal	3.23 x 10 ²³	
500 °C anneal	1.30 x 10 ²³	
600 °C anneal	6.87 x 10 ²²	
800 °C anneal	5.67 x 10 ²²	
900 °C anneal	5.21 x 10 ²²	

Cluster size increases density decreases At higher temperatures they migrate and diffuse into each other

Dislocation density

Decreasing dislocation density as annealing temperature rises

Area of examination: 3-5 μm^2

	Dislocation density [m ⁻²]
Unirradiated	1.6×10^{13}
No anneal	1.9×10^{13}
500 °C anneal	2.0×10^{13}
600 °C anneal	1.4×10^{13}
800 °C anneal	1.1×10^{13}
900 °C anneal	4.5×10^{12}

Bubble development

- First observed on 800 °C annealed samples
 - Neutron irradiation develop voids above a certain T
 - He developed by transmutation reactions due to irradiation, fills voids
- Bubble size increased and density decreased slightly at 900°C

	Bubble density [pieces/m³]
800 °C anneal	1.27 x 10 ²⁴
900 °C anneal	1.18 x 10 ²⁴

Vickers hardness test:

- diamond indenter (pyramid with square base, angle 136°), 0.5 kg load, 15 sec
- Defects and bubbles are obstacles to dislocation movement

 \rightarrow hardness increases

- Introduction
- Sample preparation for (un)irradiated tungsten
- Microstructural evaluation of
 - Unirradiated W
 - Irradiated W
- Effect of annealing on irradiated W
- Effect of radiation damage amount on microstructure

Effect of radiation damage amount on microstructure

Irradiation conditions	5-SSB-W-16-1-R5	5-SSB-W-19A-3-R5
Dpa	1.42	3.5
He (appm)	37	140
T _{irradiation}	80 °C	110 °C

Effect of radiation damage amount

Dislocation density: $1.9 \times 10^{13} \text{ m}^{-2}$ Cluster density: $3.2 \times 10^{23} \text{ m}^{-3}$

Dislocation density: $1.8 \times 10^{13} \text{ m}^{-2}$ Cluster density: $3.1 \times 10^{23} \text{ m}^{-3}$

Effect of radiation damage amount

- The quality of flash polishing strongly depends on parameters such as voltage, temperature or the material of the grid and welding. Irradiating W shifts the optimal flash polishing parameters from 2 to 9 °C.
- 2. The structure of W changed due to irradiation. The dislocations shortened down and defect clusters appeared.
- 3. Annealing has an effect on dislocations and defects:
 - 1. No. of dislocations reduce to more than half at 900 °C.
 - 2. No. of cluster defects reduce down to 1/6th at 900 °C
 - 3. Their sizes grow to approx. 5 nm from the initial 2 nm.
 - 4. He bubble development is observed from 800 °C
- 4. Radiation damage change from 1.42 to 3.5 dpa had no effect on the W structure

Thank you for your attention!

Barbara Horvath barbara.horvath@psi.ch

