

IWSMT-13, Nov 2016, Chattanooga, USA

EUROPEAN SPALLATION SOURCE

Formation of Oxide Layers in Mildly Oxidizing Gas

Jemila Habainy^{1,2}

Christopher Nilsson², Srinivasan Iyengar^{1,2}, Kumar Babu Surreddi³, Yongjoong Lee¹, Yong Dai⁴

¹European Spallation Source ERIC, Sweden, ²Div. of Materials Engineering, Lund University, Sweden ³Dalarna University, Sweden, ⁴Paul Scherrer Institut, Switzerland

Outline

- Background
 - ESS tungsten target
 - Tungsten oxides and oxidation kinetics
- Materials and Methods
 - Samples, atmospheres & temperatures
 - Experimental set-up
- Results
 - Mass changes
 - Oxide layer thickness
 - Surface analysis

Target at ESS

- Tungsten heated during spallation
 - Max. temp \sim 450°C
 - Helium cooling system
- O₂ and H₂O impurities in He
 - Causing oxidation \rightarrow Erosion of target?
 - Oxide vaporized >750°C \rightarrow Release of radioactive particles
- Information on oxidation at different oxygen partial pressures useful under normal and off-normal operating conditions

Understanding the oxidation behaviour of pure W in mildly oxidizing gas mixtures

EUROPEAN SPALLATION SOURCE

- Estimating the impact of impurities like O₂ and H₂O(g) in He gas
- Study the formation of oxide layers on W in gas mixtures with different oxygen contents
 - 5%, 0.5% and 5ppm O₂
- Study the kinetics of oxidation and the nature of oxides formed
- Identify safe operation limits for target operation
 - Temperature, environment

E-polished, rolled W. 20mm dia, 3mm thick 5.5mm dia, 26 um thick

Protective gas atmosphere

E55

- Prevent/minimize the oxidation of tungsten
- Requirement: $(p_{O2})_{He} < (p_{O2})_{W-WO_{3-X}}$ equilibrium
- Monitoring the effective partial pressure of oxygen in the gas is crucial
- Purification of He gas to reduce O₂ and moisture levels

Ellingham diagram

W+O₂=WO₂ at 400°C → $pO_2 < 10^{-32}$ atm. In order to keep W free from oxide

EUROPEAN SPALLATION SOURCE

The overall tungsten oxidation process can be divided into three different stages:

- 1. Phase boundary controlled
 - Formation of first oxide layer
- 2. Diffusion controlled
 - Growth of dark and protective layer
 - Growth of porous WO₃
- 3. Sublimation of WO_3

Formation of oxide layer > 600°C

- Initial oxidation is phase boundary controlled.
- This oxide layer is thin, adherent and protective.
- Rate is limited according to the rate of diffusion of O²⁻ ions through the oxide scale → parabolic oxidation rate

Formation of tungsten oxides between 600°-750°C

- WO₃ forms on top of the first layer
- Porous, not very adhesive, volume ratio of 3.35 → WO₃ creates high stresses, oxide layer cracks, exposes fresh metal surface.
- The non-protective nature of WO₃ results in a linear oxidation rate
- W/O ratio varies, lowest oxide closest to metal surface
- Sublimation takes place <750°C
 - Conflicting data on threshold temp for sublimation in literature. Dependent on P_{O2} and $P_{\rm H2O}$

EUROPEAN

EUROPEAN SPALLATION SOURCE

Reaction: $WO_3(s)+H_2O(g)=WO_3H_2O(g)$

- Formation of some gaseous species contribute to the sublimation of tungsten oxides (above 750°C)
- The above reaction is pushed to the right as the product (tungstic acid) is formed and removed quickly.
- Green et. al, Vaporization of tungsten in flowing steam at high temperatures (2001):
 - 100% steam superheated to 140°C
 - Formation of $WO_3H_2O(g)$ at as low as $800^{\circ}C$

Various W oxides, W-O system

- Oxides with higher oxygen content are near the oxideoxygen phase boundary
- The oxides most frequently mentioned are:
 - WO_2 , $WO_{2,72}$ ($W_{18}O_{49}$), $WO_{2,9}$ ($W_{20}O_{58}$) and WO_3
- Other oxides mentioned in the literature
 - ex. WO_{2,75}, WO_{2,92} and WO_{2,96}

Experimental setup (TGA)

EUROPEAN SPALLATION SOURCE

- Thermogravimetric analysis
 - Isothermal studies from 400°-1075°C
 - N₂ protective gas during heating
 - Reactant gas mixture of He-x%O₂
 where x = 5ppm to 5%
 - 2h holding time

(1) Data aquisition, (2) Balance with suspended sample,
(3) Thermocouple (4), Flow meter, (5) Drierite & calciumcloride, (6) Gas cylinders (7) Furnace

W-samples after oxidation in He+Ar+H₂O gas mixture (2h, p_{H2O} ~0.0078 atm.)

EUROPEAN SPALLATION SOURCE

400°C

500°C

600°C

W-samples after oxidation in He+0.5%O₂ gas mixture (2h, $p_{O2} \sim 0.005$ atm.)

EUROPEAN SPALLATION SOURCE

400°C

600°C

14

Tungsten in He+0.5%O₂ gas mixture (2h, $p_{O2} \sim 0.005$ atm.)

15

Tungsten in He+Ar+H₂O gas mixture (pH₂O= 7.8×10^{-3} atm)

Results from STA ($p_{O2} \sim 5.10^{-6}$)

XRD measurements

EUROPEAN SPALLATION SOURCE

Results from the XRD measurements indicate the following oxides :

AIR		ARGON	
600°C	WO3	700°C	$W_{10}O_{29}$
500°C	$W_{18}O_{49}$	600°C	$W_{18}O_{49}/W_{10}O_{29}$

Oxidized tungsten samples (He-5%O2, 2h)

600°C

700°C

800°C

E

EUROPEAN

SPALLATION SOURCE

900°C

1000°C

<u>1075°C</u>

EUROPEAN

SPALLATION SOURCE

Dynamic studies on oxidation

EUROPEAN SPALLATION SOURCE

- W-foil
- In situ studies in an ESEM* using a hot stage
- Heated from 25° to 1000°C
- Atmosphere of water vapour at low pressure (~100Pa)

*Enviromental Scanning Electron Microscope

W-foil surface at 25°C

W-foil Surface at 605°C

W-foil surface at 700°C

AES of (500°C, He, 2h)-sample

EUROPEAN SPALLATION SOURCE

Before sputtering

After 12 min sputtering

The survey spectrums before and after sputtering

AES of (600°C, He, 2h)-sample

EUROPEAN SPALLATION SOURCE

After 24 min sputtering

AES: He+Ar+H₂O, 500C, 2h

EUROPEAN SPALLATION SOURCE

AES: survey & depth profile

Oxide layer thickness: ~550 nm

After 12 min sputtering

EDS+SEM on (700°C, He+Ar+H₂O, 2h)-sample

Position	at. % O	at. % W	O/W
1	71.96	28.04	2.57
2	66.58	33.42	1.99

Position	at. % O	at. % W	O/W
1	73.06	26.94	2.71
2	67.23	32.77	2.05
3	75.36	24.64	3.06
4	70.24	29.76	2.36
5	71.75	28.25	2.54

Summary

- Oxidation behaviour of pure W has been studied
 - Methods: Thermogravimetry, TG/STA/DSC, In situ Microscopy. Isothermal & nonisothermal studies. XRD, EDS, AES. Temp: 400-1075°C
- Oxidation environment
 - He+5%O₂, He+0.5%O₂, He+5ppmO₂, H₂O(g), Ar/He, Ar+He+H₂O, Air
- Lower oxides of W are formed during the initial stages of oxidation and are stable at relatively low temperatures and partial pressures of oxygen
- Oxides formed below 600°C are dark, adhesive and protective. Oxide layers formed at higher temperatures are porous and non-protective.
- Water vapor oxidizes tungsten less than oxygen, but contributes to the sublimation of WO₃.

Summary cont.

٠

- Oxidation is parabolic initially, tending to be linear at higher T and for longer oxidation (48h). At low T, W shows oxidation tendencies even at low oxygen levels.
- Activation energy for He+0.5%O₂ (95 kJ/mol) is lower than for He+Ar+H₂O (183kj/mol)
- Activation energy for He-5%O₂ above 700°C (127 kJ/mol) agrees well with the diffusion of oxygen ions in WO₃.
- Sublimation is not significant below 1075°C
 - <u>The results indicate that oxidation occurs in inert gases</u> <u>containing oxygen impurity (max. 5ppm O₂)</u>