

The ESS helium cooled rotating target

Consorcio ESS-BILBAO & Instituto de Fusión Nuclear & ESS-ERIC

A. Aguilar, L. Mena, M. Mancisidor, I. Herranz,
R. Vivanco, M. Magán, G. Bakedano , T. Mora, J. Aguilar, P. Luna,
K. Sjogreen, U. Oden, F. Sordo, J.M. Perlado, J.L. Martínez

Oct. 30th - Nov. 4th, 2016

 $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle = 0$ $Oct. 30^{th} - Nov. 4^{th}. 2016$

1/36

IWSMT-13th (ESS-B & IFN)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで Oct. 30th - Nov. 4th, 2016

2 / 36

Introduction

IWSMT-13th (ESS-B & IFN)

Oct. 30th - Nov. 4th, 2016 3 / 36

◆□> ◆圖> ◆国> ◆国> 三国

ESS-BILBAO Consortium

Role and functions

- The Spanish Government has taken the decision to make ESS-BILBAO the only contractor from Spain to ESS project.
- Staff of 65 scientists & engineers and the possibility to hire extra staff.
- ESS-BILBAO has been nominated as Spanish representing entity for ESS operational phase.
- The collaboration between ESS-Bilbao and IFN started on 2009. ESS-bilbao Target division is working at IFN facilities in Madrid.
- On November 2014, ESS-Bilbao was chosen as ESS partner for Target Wheel, shaft and drive unit.
- On December 2014, ESS-Bilbao was chosen as ESS partner for TBD, Proton Beam Entrance Window and Monolith Vessel.
- On October 2015, and International Panel Chair by Matt Fletcher evaluate the Target Base Line with positive feedback.
- On Semtember 2016, Critical design review for the Spallation Material and the Cassettes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

ESS-Bilbao involvement on ESS target projec

ESS-Bilbao Workpackages

The total budget for ESS Target station is \sim 150 M€. ESS-BILBAO Consortium has been chosen as ESS partner for \sim 12-16 % of the Target Station project.

Work Package	KO meeting	Delivering date
Target Wheel & Shaft & Drive Unit	Jan-2015	Apr-2019
Proton beam entrance window	Apr-2015	Feb-2018
Tunning beam dump	Apr-2015	Feb-2018
Monolith vessel	Jun-2015	Feb-2018
Beam Instrumentation plug	—	Oct-2018
Neutron Beam Windows	-	Oct-2018
TOTAL	17.9 M€	

 $\langle \square \rangle \langle \square \rangle \langle \square \rangle \langle \square \rangle \rangle$ Oct. 30th - Nov. 4th, 2016

6 / 36

Introduction: ESS-Bilbao Target Workpackages

Target & Shaft & Drive Unit

- Spallation Material: Hot Rolled W
- Internal Structures and shielding: SS-316L
- Target Vessel and shaft: SS-316L
- Beam Power: 5 MW
- Max Proton Energy: 2 GeV
- Life Time: 5 years
- Coolant: helium
- Helium Pressure: 10 bar
- Helium flow mas: 3 kgs⁻¹
- RCC-MRx Class 2 Component
- Life time 5 years

Introduction

Introduction: ESS-Bilbao Target Workpackages

Target, shaft and Drive Unit

Target Wheel

IWSMT-13th (ESS-B & IFN)

Oct. 30th - Nov. 4th, 2016 8 / 36

3

<ロ> (日) (日) (日) (日) (日)

Introduction:

TDR proposal (2013)

ESS-Bilbao target proposal

On January 2015, we propose a new configuration for the flow patron and the spallation material. It was accepted by ESS in the KO meeting.

IWSMT-13th (ESS-B & IFN)

Introduction: ESS-Bilbao Target Workpackages

The Spallation material is composed by \sim 7000 80x30x10 \textit{mm}^3 bricks on cross flow configuration

10 / 36

Introduction: ESS-Bilbao Target Workpackages

The bricks are assembled in a SS-316L Cassette with groves drilled on it

Internal structures (SS-316L)

Target Wheel base line

Target Vessel

The Target Wheel is composed by 36 "semi-targets" (cassette + spallation material) assembled in a wheel. Helium is introduced by a coaxial pipe and circulates through several open volumes to guaranty and homogeneous inlet pressure in from of the cassette.

Selection process

Oct. 30th - Nov. 4th. 2016

12 / 36

Spallation material: Irradiation Damage

Proton & neutron damage on W

Taking into account both types of particles, the maximum damage after 5 years of full power operation is \sim 10 dpa with \sim 360 appm of hellium and 1600 of hidrogen. Based on this values, the W will be brittle after \sim 2 months of operation.

Neutron induced radiation damage [5000 h & 2.5 mA]

13 / 36

Spallation material: Thermomechanical analysis

Thermal transient analysis

Setting the heat transfer coefficient (h) obtained from CFD and the thermal source obtained from MCNP accurate thermal profiles of the cassette and tungsten are obtained, reducing the computational resources and times to something achievable.

Transient solution

Spallation material: Quality evaluation

Evaluation of different suppliers

Taking into account the large differences on W grades, ESS-Bilbao is developing its own QA process to accept "W Suppliers" in the official "Call for tender process". Samples from 6 suppliers are under analysis at CEIT. This task will be completed in the next month and the data included in the CDR for Spallation material .

QA analysis on going at CEIT

Oct. 30th - Nov. 4th, 2016

15 / 36

IWSMT-13th (ESS-B & IFN)

Target Wheel

Spallation material: Quality evaluation

QA analysis on going at CEIT

Oct. 30th - Nov. 4th, 2016 16 / 36

Chemical

omnositio

Impurities

above

threshold

>30 ppm O

(44 ppm)

Fractography

Spallation material: Quality evaluation stage 1

Surface stresses and diffraction peaks

Oct. 30th - Nov. 4th. 2016

17 / 36

Spallation material: Quality evaluation stage 2

In the second stage 2 suppliers shows optimal properties for our application

- Bricks 2 & 6: strong level of sub-surface biaxial compressive stresses up to resp. 30 and 50 mm
- Brick 5N: weak compressive surface stress up to less than 10 mm

Surface residual stresses

IWSMT-13th (ESS-B & IFN)

Target Wheel

Spallation material: Quality evaluation

QA analysis on going at CEIT

Supplierts 2, 5 and 6. Gran structure in the middle plane.

Introduction: ESS-Bilbao Target Workpackages

Target, shaft and Drive Unit

Target Vessel: Irradiation Damage

Neutron damage

Far from the proton beam window, the damage is mainly produced by neutrons. The maximum value, produced in the rib in between sectors the damage is ~ 1.2 dpa and 1.6 appm of helium per year. After 5 years of operation the total damage is below 6 dpa with a gas accumulation below 9-10 appm of Helium.

Neutron induced radiation damage [5000 h & 2.5 mA]

IWSMT-13th (ESS-B & IFN)

Oct. 30th - Nov. 4th, 2016 21 / 36

Proton beam window: Irradiation Damage

Neutron damage

On the proton beam window, the damage is mainly produced by protons. The maximum value, produced in the window is \sim 0.7 dpa and 130 appm of helium per year. After 5 years of operation the total damage is below 3.5 dpa with a gas accumulation below 700 appm.

Proton induced radiation damage [5000 h & 2.5 mA]

IWSMT-13th (ESS-B & IFN)

Oct. 30th - Nov. 4th, 2016 22 / 36

<ロ> (日) (日) (日) (日) (日)

Target Vessel

Mechanical analysis based on RCC-MRx

The Target vessel is considered as a Class 2 component (RCC-MRx). Based on that the mechanical analysis of the vessel has been completed including fatigue and welding analysis.

CFD analysis conditions

 $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \rangle \langle \Box \rangle \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \rangle \langle \Box \rangle \langle$

23 / 36

Target Vessel:Linearized analysis results

Rib zone results. Elastic analysis

- 20.5 MPa $(P_L) \le 190.5$ MPa $1.5 * S_m(100^{\circ}C)$
- 179 MPa (P_L + P_b) ≤ 190.5 MPa (1.5 * S_m(100°C))
- 236.3 MPa $(P_L + Q) \le$ 3711 MPa $(S^A_{em}(100^{\circ}C, 2.75 dpa))$
- 228.2 MPa $(P_L + P_b + Q + F) \le 6371$ MPa $(S_{et}^A(100^{\circ}C, 2.75dpa))$

Target Vessel: Welding analysis

Welding analysis

The welding regions has been agreed with manufactures and reviewed based on the RCC-Mrx criteria. Full penetration, volumetric inspections and one face surface inspections are need for the ribs. The stress values in the beam entrance window are much lower and only surface inspection will be needed.

Alternative 1 ($P_L = 179$ MPa in welding area, Based on interpretation)

Alternative 2 ($P_L = 125$ MPa at 2 cm, Welding Type II.1)

Target Vessel: Welding prototype

Alternative 1 prototype

To evaluate the welding procedures and inspection a prototype based on Alternative 1 has been completed including all the inspection procedures considered on RCC-MRx system (RES and RAD) on the rib position and the window.

Manufacturing and inspections

・ロト ・ 理ト ・ ヨト ・ ヨト

Target Vessel: Welding prototype

Alternative 1 prototype

To evaluate the welding procedures and inspection a prototype based on Alternative 1 has been completed including all the inspection procedures considered on RCC-MRx system (RES and RAD) on the rib position and the window.

Manufacturing and inspections

Target Shaft

IWSMT-13th (ESS-B & IFN)

Oct. 30th - Nov. 4th, 2016 27 / 36

3

◆□ > ◆圖 > ◆臣 > ◆臣 >

Target Shaft

Target, shaft and Drive Unit

Shielding requirements

The internal shielding of the shaft is a critical requirement to reduce the dose rate values on top of the target monolith. Along the last months the average shielding requirement has been estimated (\sim 60 % of steel density) but the shape of the shielding was not taken in to account so the neutron streaming was not properly evaluated.

Pressure drop & manufacturing

The configuration of the helium channels inside the shielding drives the pressure drop of the shaft. Several options are under evaluation in order to minimize the pressure drop and manufacturing requirements.

CFD-MCNPX optimization loop

Based on previous requirements, a neutronic-fluid dynamic optimization loop is on going to evaluate several shielding solutions.

> ▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで Oct. 30th - Nov. 4th, 2016

29/36

Shaft CFD-MCNPX analysis

Cross section

- Comparison between two shaft shielding options has been completed considering CFD and shielding analysis.
- After discussion with manufacturer Helical shileding has been choosen (three helical channels for inner and outer shielding)

Dose rate on top of the monolith for several shaft internal shielding configurations

<ロ> (日) (日) (日) (日) (日)

Oct. 30th - Nov. 4th, 2016

3

31 / 36

Neutron Dose at the top of the monolith

IWSMT-13th (ESS-B & IFN)

Thermomechanical analysis

Temperature distribution shows significant gradients associated to helium flow. However, primary and secondary loads are far below $RCC - MR_x$ mechanical limits.

Temperature distribution

Oct. 30th - Nov. 4th, 2016

32 / 36

IWSMT-13th (ESS-B & IFN)

Manufacturing prototype for Shaft internal shielding

- Manufacturing of the internal shielding "spiral channels" shows significant risk in the assembling process.
- 1:5 prototype has been completed to evaluate manufacturing tolerances. No significant deviation has been observed.

Drive Unit

IWSMT-13th (ESS-B & IFN)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ○
 Oct. 30th - Nov. 4th, 2016
 34 / 36

Drive Unit & Positioning system

Preliminary design

ESS-Bilbao awarded a contract to A.V.S. for the design of the drive unit. The main components definition has been completed, including definition of the main bearing system, clamping system and motor.

Drive Unit

Conclusions

IWSMT-13th (ESS-B & IFN)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ○
 Oct. 30th - Nov. 4th, 2016
 36 / 36

Conclusions

Main remarks for lower and medium vessel

- KO meeting in January 2015.
- Iternational review pannel in October 2015.
- CDR for the spallation material and cassettes completed (September 28th)
- Full scale prototype for Target Vessel will be completed by January 2017.
- Manufacturing will start in November 2017 (Contact award for Cassette series)

 ✓ □ → < ⊇ → < ⊇ → </td>
 ⊇

 Oct. 30th - Nov. 4th, 2016

37 / 36

• Up to November 2016, the target project is on schedule.

IWSMT-13th (ESS-B & IFN)