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Background

* The SNS target is a liquid
metal design — uses
flowing mercury as the
target material.

* Target inner mercury
vessel and outer water-
cooled shroud are
fabricated from 316L

stainless steel I
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Target 13 Sensors

 Eight off-the-shelf fiber optic strain gages (FISO Technologies Inc.)
were installed onto the target.

« Some sensors did not provide useable data.

High-rad fiber loop test
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Epoxy Irradiation

« Sensors attached with Stycast
2850FT with Catalyst 11.

* Target operated for 2588 MW:-hr
at an average power of 968 kW.
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Epoxy Irradiation

* Vendor data supported -
use forupto 109rad —
(10 MGy) gamma. 5 e

* Temperatures for all - -

sensors less than

150°C. e
« Epoxy held up to 1070 .-"'"'ﬂ__

rad (100 MGy), stayed -
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Target 13 Measured Data Example

Strain - microinches/inch
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Target 13 Measured Data Example

Strain - microinches/inch

Target 13 - Seven Pulses at Same Energy
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Target 14 Sensors

 Eight rad-hard fiber
optic strain gages
were installed on
the target.

* Again, some
sensors did not
provide useable
data.
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Strain - microinchesfinch

Target 14 Measured Data Example
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Target 14 Measured Data Example

Strain - microinches/inch

Target 14 - Four Pulses at Same Energy
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Linearity with Power

* Strain response was
linear with power, despite
non-linear material
behavior.
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Comparison to Model

» SNS has used ABAQUS/Explicit for A\
simulations of the pulse loading. v d |

» Material model is based on work done
by Bernie Riemer”*
— Mercury model is Mie-Gruneisen Equation-
of-State model, with 1456 m/s as the bulk
speed of sound and Gruneisen constant

and particle speed coefficient S are set to
Zero.

— Includes a tensile failure criterion of 1.5 bar.

— Developed as best fit from experimental data
of mercury filled targets struck with beam.
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* - Benchmarking dynamic strain predictions of pulsed mercury spallation target %()AK RIDGE
vessels, B. W. Riemer, Journal of Nuclear Materials 343 (2005) 81-91. Paonelk Aot



tegration elements for mercury

1

* Model built using C3D8R reduced

Comparison to Model
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Strain - microinchf/inch

Comparison to Model

150

100

507

-100

—— Simitr - Simulation agrees relatively well
at beam location, though
simulation overpredicts strain.

— Sensor response range 146ue

— Simulation response range 207 ue
* 41% overprediction on range

High-rad fiber loop test

0 01 02 0.3 04 05 06 0.7 08 09 1
Time - seconds x 102

%OAK RIDGE

National Laboratory



Strain - microinchfinch

Comparison to Model

Sensor 2 - Target 13 vs Simulation

o0 i * Overprediction appeared to get
el worse farther away from the
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Strain - microinchfinch

Comparison to Model

Sensor 2 - Target 15 vs Simulation
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Comparison to Model

Strain - microinchfinch

40 r
L e * [n area far from beam,
S magnitude is similar, but
2| response pattern is not.
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Comparison to Model
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Simulation Parameter Study

 Varied parameters of model to determine if any would result in a
better fit to the measured data.

« Added damping
— Bulk viscosity term of simulation
— Rayleigh damping in steel

* Material property changes

— Mercury bulk modulus
— Mercury tensile cutoff pressure

%OAK RIDGE
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Effect of Bulk Viscosity on Simulation

. x107 Bulk Viscosity-sensor1
) ABAQUS/EXpIiCit | ::llgi t::zz:and 10X Quadratic
IntrOduceS a Sma” T I"“ —'—git;:z::andZXQuadratic
amou nt Of damplng to E 1 —:ﬁ);nL\Ii:;IarLinear and No Quadratic
control high frequency 5 05f X Linsarand 0.1X Quadrai
oscillations. 2
: g 0
* Allows for a linear and 8
guadratic parameter. osh
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Effect of Bulk Viscosity on Simulation

10 X1 0° Bulk Viscosity-sensor2
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Effect of Bulk Viscosity on Simulation

] _><10'5 Bulk Viscosity-sensor7

 ABAQUS/Explicit

Infroduces a small 05}

amount of damping to 5

control high frequency s 0]

oscillations. 3 \

g 05k } | 10X Linear and 10X Quadratic

» Allows for a linear and 8 Vs |

quadratic parameter. Bl
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Effect of Rayleigh Damping in Stainless Steel

on Simulation

» This damping can include
both a mass factor and a
stiffness factor.

 Provides a frequency
dependent damping.

* Normally not included in
model.

« Added only for the
stainless steel.
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Effect of Rayleigh Damping in
Stainless Steel on Simulation

S . <1074 Rayleigh Damping-sensor1

2 Raylelgh damplng does =l ; o o No Rayleigh Damping

dampen noise Iin | o

response. 1+ 5% at 60Hz, 10% at 100kHz
- However, no significant S os!

change in sensor 5

response. g o
 Simulation with mass

05

damping required ~50X
the computing run time.
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Effect of Rayleigh Damping in
Stainless Steel on Simulation

* Rayleigh damping does Reyleigh Damping-sensor:

. . No Rayleigh Dampin
dampen noise in _ St
res p onse. i N - :t 60Hz, ?0% at 100kHz

Al

* However, no significant
change in sensor
response.

Predicted Sensor Strain
N

« Simulation with mass

damping required ~50X 2]
the computing run time. ., . , l [ |
0 0.2 0.4 0.6 0.8 1
Time - Seconds x1073
i SRS



Effect of Rayleigh Damping in
Stainless Steel on Simulation

- Rayleigh damping does 10 Ravieigh Damping-sensor?
dampen noise Iin
response. 05|
» However, no significant i o_.W
change in sensor 5 Vi
response. g o5t
« Simulation with mass o i\ _
. . -hr No Rayleigh Damping
damping required ~50X o Sttt
the computing run time. . | S S%a o i)
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Effect of Mercury Tensile Cutoff Pressure
on Simulation

15 107 Tensile Cutoff Pressure-sensor1

—— No cutoff
6 bar
3 bar

* The mercury material model

tensile cutoff pressure is used (L 18
to simulate the cavitation s | o 15
behavior. 2 ost
- At the beam entrance, adding @ |
and then lowering the tensile  :
cutoff adds a holding time to osl
the first peak, and influences
the later troughs. 4] - - - - 1

Time - Seconds x10°3
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Effect of Mercury Tensile Cutoff Pressure
on Simulation

« 1074 Tensile Cutoff Pressure-sensor1

* The mercury material model N
tensile cutoff pressure is used —1sbar
to simulate the cavitation STt "~ Vem
behavior.

o
o
T

At the beam entrance, adding
and then lowering the tensile
cutoff adds a holding time to
the first peak, and influences
the later troughs.

Predicted Sensor Strain
o

- Reducing the cutoff below 1.5 o o1 02 03 a4 05 G o7 0s 03 1
bar has less of an effect.
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Effect of Mercury Bulk Modulus

on Simulation

 Bulk modulus is the ratio of
pressure increase to
decrease in volume.

* |nitial stress must be
adjusted:

v

LS

p Vv P = volumetric power deposition [W. /m’ ]

dP=P-

= Hg volumetric expansion coefficient
K = Hg bulk modulus of elasticity
f=beam pulse frequency

p = Hg density

C, = Hg constant volume specific heat

F = Beam power scale factor

Predicted Sensor Strain

x107

150 .
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Effect of Mercury Bulk Modulus
on Simulation

x107% Bulk Modulus-sensor1

» Peak strain relatively B
insensitive to mercury bulk o
modulus. Lower values VA |
delay the timing of the

peak.

Predicted Sensor Strain

* Less than 6% change in
strain response maximum
and range at this location . . . . . |
from nominal. LY merseonds e
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Effect of Mercury Bulk Modulus

on Simulation

 Similar change seen farther
from the beam.

* Less than 8% change in
strain response maximum
and range at this location.

Predicted Sensor Strain
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Effect of Mercury Bulk Modulus

on Simulation

- Largest relative change far
from the peak.

« Range changed up to 30%
from nominal, peak
changed up to 35% with

nigh bulk modulus.

* Predicted strains remain
ow, 11 microstrain
maximum.

Predicted Sensor Strain
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Summary and Future Work

150 1

* Measurements show that our predictive
model is getting us in the right range of |
expected pulse stresses, but there is
still room for improvement.

— None of the modifications studied here

make significant improvements to fit of
data.

* Measurements are repeatable on the
same target, but still working to 00—

01 0.3 04 0.5 0.6 0.7 0.8 0.9 1

understand target to target variations. Thre - s6corll

50

Strain - microinchfinch

-50
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Summary and Future Work

* Measurements of strains on the target
are critical for upcoming rollout of
helium gas injection into the mercury Modifed  New gas
ta rg e t vent supply port

— Will provide feedback on how well it works.

— Will provide data needed to update to
material models needed to predict effect of
design changes.

New hardware in
mercury passages
(one on each side)
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