13th International Workshop on Spallation Materials Technology 30 Oct. - 4 Nov. 2016

Cavitation damage in double-walled mercury target vessel

Takashi Naoe, Takashi Wakui, Hidetaka Kinoshita, Hiroyuki Kogawa, Katsuhiro Haga, Masahide Harada, Hiroshi Takada, Masatoshi Futakawa

> J-PARC Center, Japan Atomic Energy Agency

Outline

- Background and purpose
- Cavitation damage inspection
- Correlation between damage distribution and negative pressure period
- Future plan for damage mitigation
- Summary

Cavitation damage in mercury target

- Cavitation-induced erosion degrades structural integrity of the target vessel, e.g. mercury leakage and fatigue failure
- Damage increases with the beam power
- Cavitation damage mitigation is necessary under high power operation
 Designed lifetime of JSNS target is 2500 MWh (tentative dose limit 5 dpa)

Cavitation damage mitigation

TargetSurface hardening1stReduce cavitation dama

3rd

4th

5th

8th

Reduce cavitation damage Nitriding & Carburizing, Kolsterising

2nd target (Spare) No-bubbling techniques to mitigate pressure waves and cavitation damage

Microbubble injection

Reduce pressure wave and cavitation damage Inject helium gas microbubbles (R<50 µm) into flowing mercury (VF:10⁻² in flow ratio)

3rd target vessel with bubble generator Double walled structure

Reduce cavitation damage by high-speed mercury flow and narrow gap

 Order of target vessel operation

 1st→ 3rd→ 5th→ 7th→2nd…> (8th)

 Year 2008
 2011
 2014
 2015
 2016
 (2017)

Surface hardening

Surface hardening

Double-walled beam window

Schematic illustration of mercury vessel

Expects damage reduction effects inside narrow channel

- Flowing effect (increase pressure gradient around surface)
- Narrow channel effect (asymmetrically bubble collapsing)
- SNS target has actual results of damage mitigation effect by double-walled structure

5th target ~

Small bubble Microjet ejects vertical to wall Large bubble Microjet ejects parallel to wall

Purpose Investigate the effect of double-walled structure on cavitation damage mitigation

- 5th target damage inspection
- Compared damage distribution with negative pressure period

Cutting and inspection of 5th target

- 5th target vessel was failed by water leak from water shroud
- Before replacing target to 7th target, beam window part was cut using annular cutter 50 mm in inner diameter to inspect inside damage
- Cut performed without any lubricant by full-remote handling

Difficulties of cutting multi-layered wall

- 5th target (4 layers structure) was cut using annular cutter
- All prepared cutters (tip of saw) were broken by heat of dry cutting (>500°C) Need to reconsider cutting condition and material of saw (coating, etc.)
- Innermost layer of beam window is still remains on cut hole
 The effect of gas microbubbles injection on cavitation damage was not confirmed 7

Damage inside narrow channel

Outer mercury vessel

Inner mercury vessel (narrow channel side)

- Annular cutter was ca. 7.5 mm offset from center
- Horizontal damage band due to change of roughness was observed
- Machined scratch is recognized at top and bottom side, eroded depth seems small
- Color of surface is changed by heat of cutting
- Severe damage due to the cavitation and erosion was not observed on inner side 8

Cavitation damage around center

Outer mercury vessel

Silicone rubber replica (Struers, RepliSet F1)

Replica enclosed in glass cell and measured depth profile by LSM

- Damage band seems to be formed by accumulated pits
- Maximum depth at around center is not changed much compared with off-center
- Relatively deep pits are scattered with rough surface
- Maximum damage depth at center is 25±5 μm (deeper than predicted value 10-15 μm) 9

Center of band-like damage

Boundary of band-like damage

تجمير Why the band-like damage was formed

Possible reasons : Un-uniform gap, Flow distribution, Pressure distribution, etc.

Damage seemed to be increased with increasing in gap width in off-beam experiment

Measured gap between outer and inner wall (in fabrication inspection)
 Gap at center part is slightly narrower than other part not so much
 Opposite trend with off beam experiment

Flow velocity distribution in narrow channel

- Flow velocity distribution in narrow channel was experimentally investigated using full-size acrylic model with water loop
- Flow velocity at center part is slightly slower than top&bottom side

Pressure wave simulation by LS-DYNA

Half-model of target vessel

Total nodes: 5,072,820 Total elements: 4,495,996 Full solid model (hexahedral elements)

Mercury : Elastic fluid with cut off pressure of -0.15 MPa SS Vessel : Elastic

ΔP=38MPa@15.3J/cc

- Distribution of pressure waves in target vessel was calculated by LS-DYNA
- Initial pressure distribution based on nuclear heating calculated by PHITS and JENDL

Negative pressure period

- Negative pressure period, which is correlated with degree of cavitation damage, was calculated using pressure time response
- Here, we focus attention on the distribution of accumulated saturation time

Negative pressure distribution

- Accumulated negative pressure period up to 2 ms seems to be correlated with the damage distribution on cut out disk
- Short time of negative pressure period is effective to form damage in narrow thannel

Pressure and bubble responses at center

- Bubble growing and collapsing occurs before 2 ms in 300 kW
- In the case of 300kW (take bubble effect into account), it has the possibility to occur violent cavitation bubble collapse

Future plan to improve target and mitigate cavitation damage

Double flow target concept

- Cavitation damage mitigation effect is still expected because the fast flow velocity in the narrow channel is maintained even after the inner wall is failed
- Double flow target (single window at center, pre-hole inner wall) has the benefits of narrow channel and bubble injection
- Gas wall for absorbing pressure waves is an option for double flow target

J-PARC

Summary

- Beam window of used JSNS 5th target vessel after 670 MWh (av. 406 kW) was cut and observed
- Measured damage depth of narrow channel by the replica was approximately 25 µm (deeper than predicted depth)
- Band-like damage damage was observed on narrow channelfacing outer mercury vessel, but no-obvious damage was observed on inner mercury vessel
- Short time negative pressure might be affected damage formation, but inner side damage is unexplained by simulation
- Effect of microbubbles on cavitation damage mitigation is still unclear due to failure of cut out of innermost beam window, we should be revise the cutting process and tools

Backup slides

 $t^* = 0.737$

 $t^* = 1.473$

 $t^* = 2.167$

 $t^* = 2.860$

Bubble behaviors in narrow gap

Toshiyuki Ogasawara, Osaka Prefecture University

IWSMT-12

Future plan for investigating narrow channel damage

MIMTM (electro Magnetic IMpact Testing Machine) with mercury circulation loop

- Previously conducted off-beam damage experiment under stagnant mercury will extend under flow condition
- Under stagnant condition, damage was reduced with the decreasing in gap width
- Relationship among flow velocity, gap width, and cavitation damage in mercury will be investigated using MIMTM with mercury circulation loop

J-P/IRC

Estimated depth change

Power depend or time depend?

- * Measured depth of pit at narrow channel is about 25 μm
- If this damage was time dependent erosion, < 0.1 mm at 5000 hours</p>
- If power dependent damage , depth of 5000 hr at 550 kWeq —> about 0.7 mm
- Is the double wall effect smaller than bubbling?

Beam profile dependency on pressure

- Effect of proton beam profile on cavitation damage was examined by pressure wave simulation
- Time response of pressure and negative pressure period at the narrow channel is hardly changed

J-PARC

Power dependency of negative pressure

- Negative pressure period that might be correlated with the cavitation damage is change with the beam power, not big difference by beam profile
- However, expanding beam (reducing peak energy deposition) is effective to reduce applied stress at the beam window

Operation histories of JSNS target

Target		Damage mitigation technology	Total power, MWh	Operating time, h	Average power, kW	
1st	2008. 5~	SH: Surface hardening	471	3713	126	Observed in 2015
3rd	2011. 12~	SH+MBI MBI: Microbubble injection	2050	7537	272	
5th	2014. 10~	SH+MBI+DW DW: Double-walled structure	e 670	1672	406	
7th	2015. 10~	SH+MBI+DW	170	330	517	
2nd	2016. 2~ in oper	none	414	1906	217	

- Ist target operation was stopped due to the earthquake
- 5th and 7th targets operation were stopped by trouble of water shroud Failed at 1month (5th) and 2 weeks (7th) after ramped up 500 kW operation
- Current average beam power is 200 kW (2nd target)

Cutting device for PIE disk

Drill machine Power 1.6 kW Forward force 7760 N

> Sugino-machine SSV5-2610

Cutter with quick change tool Outer diameter 55 mm Thickness of cutting tip 2 mm Number of cutting tip 12

Miyanaga 278P-55(S)

Size 2.1x0.7x1.5m Controllable rotation and feed speed, traverse position

Cover to prevent contamination in hot-cell

Ultrasonic cleaner with internal pot 130W, 42kHz UPS 100W-140min

Wash specimen in water to remove mercury and radioactive product

Control equipment PLC (Wireless LAN) Battery

12 V x 4 = 48 V , 85Ah Converter 200V

Operation though the wireless network

Blansonic B3510J-MT

تجمر Dose rate of target vessel target #5

0.73(Sv/h)

1.2(R/min)

Depth measurement by laser profiler

- Damage depth profile was measured using laser profile of 0.1 mm in resolution
- Resolution of this machine is insufficient for damage on specimen

Depth measurement by replica

Jointed image

- Silicone rubber replica (Struers Repliset-F1, 0.1 µm in resolution) was used to quantitatively measure the damage depth using laser microscope
- Clear surface erosion was not detected
- Surface roughness (swell) is about ±10 µm

Cavitation bubble in narrow channel

- * Size of cavitation bubble caused by shot time negative pressure is less than gap size
- * Bubble caused by short time negative pressure seems affected to band shape damage 30