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Background

* The study of irradiation effects on the reduced activation
ferritic/martensitic steels is important for the structural
materials of spallation neutron source.

* One of features of spallation neutron source is high
production rate of gas atoms, which leads to the formation of
a large amount of He bubbles. He bubbles have great
influence on mechanical properties of structural materials.

e C(Clarifying the growth mechanism of He bubbles is important
for the development of nuclear materials.



Positron annihilation spectroscopy
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[Sato et al., J. Nucl. Mater. 431 (2012) 52.]

Long lifetime decreased with increasing irradiation dose and temperature.



Purpose of this study

* We explained that the change in positron annihilation

lifetimes was caused by the absorption of He atoms by He
bubbles.

* In this study, the change in He-to-vacancy ratio of He bubbles
was obtained by rate theory analysis.



Calculation model (1)
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Calculation model (2)

*Mobile defects: interstitials, vacancies, He

“Clusters: interstitial type dislocation loops, voids, bubbles,
vacancy-He pairs

Damage: protons, neutrons
*Gas atom production: helium (no hydrogen)

"Thermal dissociation: vacancy-helium pairs,
dissociation of interstitials, vacancies and helium atoms

from bubbles

*No interaction of helium with interstitials and dislocation
loops

*Nucleation of clusters: di-interstitials, di-vacancies and
directly in cascades.

*Materials parameters: Fe (F82H)



Calculation model (3)

Concentration of interstitial type dislocation loops; C,-

Radius L,

Total sink efficiency of interstitials in dislocation loops:S,
S] — CIC X 272:[4]

Total interstitials in interstitial type dislocation loops: R,

R, =C, x7d;
9

M, C,

Ly 0% l\;C\‘

V>V




Rate equations (1)

The change in concentration of interstitial C, (fractional unit).
C,: vacancy concentration
Z: cross section of the reaction

M: mobility of point defects

dC 2
—dt] =P -2Z; M,C;" =Z;,(M; +M,)C,C),
I
damage production |-l recombination mutual annihilation

- Z],](;“\M]C]S] - ZI,VC<W]CISV - Z],BM]C]SB - Z],VHeM]C]CV,He
absorption by loops absorption by voids absorption by bubbles absorption by

vacancy-He pairs

-~M;C,Cs—N;Pc+CgDpg

/ \ 

annihilation at permanent sinks direct production of loops dissociation from bubbles




Rate equations (2)

The change of vacancy concentration: C,

dc,
dt
—Zy yMyCy Sy = Zy 1cMyCyS; = Zy gpMyCySp = Zy yMyCyCh,

+M . Dype vy Cy e + 21 yneM 1C1Cy e =My CyCq — Ny By + Cg Dy

2
=B =22y yMyCy~~Z; y (M + My)C;Cy = Z g y M 11, Cy Che

The change of He concentration: Cy,
dCy,
dt

~ZevM 51.CrieCr e + Z1yueM 1C1Cy e + M 4. Dype 11.Cv e = M 1.CCs + Cg Dy gy

=B, He — ZHe,VM HeCVCHe - ZHe,VM HeCHeSV - ZHe,BM HeCHeSB



Determination of parameters

Advantages of rate theory analysis:

Easy calculation of defect structural evolution from low to high dose.

Disadvantages:
To obtain accurate results, the number of parameters increases.

Parameters were determined to fit experimental results

F82H: X. Jia, Y. Dai, J. Nucl. Mater., 318 (2003) 207-214.

Dose He Irr. Temp. Loops Bubbles
(dpa) | (appm) | (K) Size (nm) Density (m3) | Size (nm) | Density (m3)
9.9 560 448 3.3 3X 10?2 0.7 5.1 X10%3

Defects in F82H were assumed to be interstitial type dislocation loops.




Parameters used in this simulation

p. 1.07 X 104 /s
P, 3.76 X 10°16 /s
E, 0.26 eV
E_v 1.26 eV
E,_He 0.08 eV
EgV-He 3.9eV

C. 10

C. e 1010

Zi, 40

Lyic 45

Liy 1

7,0 25

Ziver ZnheverLuver Luvhe 10

Vv 1013 /s




Dissociation energy (eV)

Dissociation energy from bubbles

Molecular Dynamics simulation
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[Morishita, J. Plasma Fusion Res. 81 (2005) 13.] . . . .
Linear approximation was applied.



Irradiation condition calculated in this study
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Change in defect concentration
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Comparison with TEM observation
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Helium-to-vacancy ratio
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Reason of high Helium-to-vacancy ratio

Reaction of helium

dC
d;[e =By — ZV,He My + M p)CyCr |- ZHe.VHeMHeCHeCVHe

production formation of V-He pair absorption by V-He pair

L teveM 1CreSy =12 e M 1CrieSe + 21 veM 1C1Crpe + My Ty Crrpge

absorption by voids absorption by bubbles reaction of intersitials  dissociation of

and V-He pair V-He pair

M y.CrCs el + CpDp e

N

annihilation at permanent sinks  dissociation from bubbles

Terms marked by red squares lead to the formation of bubbles.

Only one term marked by blue square leads to the annihilation of He from matrix.

-

Helium atoms, which lead to the formation of bubbles, are too many.



Calculation model (1)
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Revision of calculation model (Future plan)

* The following effects should be added.
1. Interaction between He and interstitial clusters (loops)

(Relatively strong trapping sites: E, > 2 eV)

2. Interaction between He and grain boundaries and
interstitial impurities

(Weak trapping sites: E,= 1.2 - 1.8 eV)

F82H (Isochronal annealing)
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Summary

* The growth process of helium bubbles was investigated
by the rate theory analysis.

* The concentration and size of interstitial clusters and
bubbles did not correspond with TEM observation. He-
to-vacancy ratio was very high (~4.5), and did not
change with the irradiation dose. This trend did not
correspond with PA results.

—>Parameters should be modified.

* New effects will be added in this rate theory analysis.

—>Helium trapping sites (Interstitial clusters, grain
boundaries, interstitial impurities etc. )






Dose dependence



Results of PAL measurements
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* The long and mean lifetimes decrease with increasing the irradiation dose below 12 dpa.
e Spectra are not decomposed into two components above 12 dpa.



CDB ratio curves
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We cannot see the conspicuous peak caused by the He atoms in all range.



Definition of S- and W-parameter

S-parameter: Ratio of the low-momentum (|P,|<2.5 X 1073 mc) area to the total area

The amount of vacancy type defects

W-parameter: Ratio of high-momentum (7 X 103 mc < |P | <12 X 1073 mc) areas
to the total area

The amount of precipitates or bubbles
This region was decided from the previous study
[Sabelova et al., J. Nucl. Mater. 450 (2014) 54.].
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S-W plots of F82H
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Solid line denotes the change in electron

irradiation.

Broken line denotes the change in STIP.

* Electron irradiation introduces
only defects. Therefore, solid line
denotes the change in 5- and W-
parameter only by the defect
formation.

* Vacancy clusters contain He atoms
in STIP samples.

Positron trapping rate into He bubbles
is smaller than that into empty voids.
So, the change in S- and W-parameter
should be different between electron
irradiation and STIP.

Difference of gradient of two lines is
due to the He effect.



PAL of vacancy clusters-He complexes in Fe
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Figure 4 Correlation between positron lifetime and the number
of helium atoms in nano-void (B) 1V+nHe, (D) 2V+nHe, (F)
6V+nHe, (H) 12V+nHe.

[Troev et al., Phys. Status Solidi C 6 (2009) 2373]



Change in PAL by He effect

From S-W plot, change in PAL is due to He absorption process.
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Isochronal annealing
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* The long and mean lifetimes decrease
as the annealing temperature is
increased up to 673 K.

* Lifetime spectra are not decomposed
into two components after annealing at
673 K.

e Spectrum is decomposed into two
components in 973 K annealing again.
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Variation in S-parameter is almost the same as that in mean positron lifetime.



S-W plots of F82H
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Solid line denotes the change in electron
irradiation.

Broken line denotes the change between
post-irradiation and samples annealed
up to 673 K.

These data points in STIP(from post-irrad.
to 673K annealing) are clearly on broken
line.

Data points for 873K and 973 K annealing
start to shift, and a data point for 1073K
shift obviously.

Change from post-irrad. to 673K is
due to the He effect.
After that, different process started.



S-W plots of F82H
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Below 673 K: Size of He filled vacancy clusters does not change, and they absorb He
atoms weakly trapped in the matrix.
Above 873 K: He filled vacancy clusters absorb vacancies and release H atoms. The size

of He filled vacancy clusters increases.
He filled vacancy clusters dissociate above 773 K.
[R. Sugano et al., J.Nucl. Mater. 329-333 (2004) 942]
This process is well known, however, we can detect it using positron annihilation

spectroscopy.



Detection of He peak in CDB ratio curve
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CDB ratio curve of F82H irradiated in STIP-Il and annealed at 673 K to F82H irradiated

with electrons for 70 h

The peak in the range of 5-12 x 1073 mc can be detected.
This result agrees with previous study [Sabelova et al., J. Nucl. Mater. 450
(2014) 54.].



Summary

PAL and CDB measurements of F82H and T91 irradiated with protons and
neutrons at SINQ were performed.

The change in PAL can be explained by the He effect.
Dose dependence

- In low dose region, vacancy clusters absorb He atoms, and PAL
decreased.

- In high dose region, the vacancy clusters containing a large amount of
He atoms are formed.

Isochronal annealing
- Below 673 K, He filled vacancy clusters absorbed more He atoms.
- Above 873 K, He filled vacancy cluster size increased.

The effect of He atoms on the CDB ratio curves was also detected.

We could obtain a better understanding of He bubble growth by
performing both PAL and CDB measurements.



PAL in fission neutron-irradiated Ni
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In more than 0.01dpa, positron lifetime is saturated, but void growth is observed by TEM.



TEM images of T91 irradiated in STIP-III

9.5dpa

17.3dpal

[Tong et al., J. Nucl. Mater. 398 (2010) 43]

Helium bubbles grow.



Positron annihilation lifetime measurement
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Calculated positron annihilation lifetime

Table 1

The calculated positron lifetimes and binding energies for vacancy clusters in Ni, Cu, and Fe as a function of the cluster size

Ni Cu Fe

Defect T (ps) Ey (eV) Defect T (ps) E, (V) Defect T (ps) En (V)
Bulk 100 0.00 Bulk 110 0.00 Bulk 104 0.00

Vi 169 334 Vi 173 2.35 Vi 180 3.56
Vs 188 3.82 Vs 196 2.74 V,* 187/202 3.86/4.11
Vi 246 4.66 Vi 255 3.36 Vs 246 4.89
Vs 265 492 Vs 274 3.57 Vg 280 5.32
Vis 341 5.54 Vis 348 4.07 Vis 368 6.01
Vig 371 5.97 Vi 377 4.28 Vaz 396 6.27
Vs 410 6.15 Vs 413 4.62 Vs 419 6.55
Vss 420 6.28 Vs 421 4.74 Vo 426 6.69
Vg 427 6.42 Vo 428 4.86 Vs 427 6.72
Vi 435 6.60 Viss 436 5.02 Visg 435 6.91

* The values are listed for two distinct divacancy geometries, i.e. Vs along [111] and [100] directions.

[H. Ohkubo et al., Mater. Sci. Eng. A350 (2003) 95.]

- Positron lifetime is proportional to the size of vacancy clusters.

"In metallic system, positron lifetime is less than 500ps.
500ps is saturation value of positron lifetime.
Even if voids grow and are observed by TEM, positron lifetime of voids is
less than 500ps.



CDB measurement

E.=511keV + Y42CPL
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*<c: light velocity
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CDB ratio curve of Fe-Cu alloy
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CDB ratio curves
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Usually, when low momentum region increases, high momentum region decreases.
But high momentum region of JPCA irradiated at PSI was higher than other samples.
This is due to helium effect??

The amount of data is too small to estimate He effect.
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CDB spectra
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Electron momentum, Py (XIO'3 mC)
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Dose dependence of positron lifetime in F82H

Formation of visible He bubbles in F82H:

Decrease of the amount of vacancy clusters above about 170°C and about 500 appm He
including small amount of He atoms [X. Jia et al., J. Nucl. Mater. 305 (2002) 1.]
100 : F82,H Growth of small He bubbles
= = iated with short-range
< 80 associa

vacancy migration.

Decrease of positron lifetime is N
due to absorption of He atoms.

» ’ e - - |Vis | Many different sizes of
] / He bubbles are formed.
as k \ 087
0 i

Small and medium-size vacancy
clusters including large amount of
He atoms

|
|
ble He bubbles :
|
|

1
~—&-Mean fifetime - - “@gei - d

—&—Short !ifetjme
a  —®—|ong lifetime 1 Visible He bubble density:
and — ; ' : : 5x1023/m3 = 6x10®
radiated 5 10 15 20 ’
Irradiation dose (dpa) |nformation of visible He bubbles

are included in these lifetimes




Annealing behavior of F82H

10(} IF82HI(Isocflwronallanne?ling)I

X 80
> 60
Decrease of positron lifetime is

due to absorption of He atoms
weakly trapped in the matrix.

400

W
o
o

Lifetime (ps)
N
o
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100+ —®—Mean lifetime o
—A—Short lifetime He bubble size increase because of

—=—| ong lifetime : I
. X . dissociation of V-He, complexes.

O 1 1
irrapd?g}i'on 200 300 400 500 600
Annealing temperature (°C)

500°C: V-He, complexes dissociate
700°C: V,,-He, complexes dissociate
1100°C: Large He bubbles dissociate



TDS measurements of Fe-Cr alloys

2

Helium Desorption Rate, ¢ /(He/m/s)
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500°C: V-He, complexes dissociate
700°C: V,,-He, complexes dissociate
1100°C: Large He bubbles dissociate
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Temperature, T/K

Fig. 1. He desorption spectra of Fe, Fe-5Cr and Fe-15Cr
irradiated by 8 keV He+ ions at room temperature. The irra-
diation doses are (a) 1017, (b) 1018 and (c¢) 10" He /m?>.

[R. Sugano et al., J.Nucl. Mater. 329-333 (2004) 942]



Annealing behavior of JPCA

JPCA (Isochronal anneallng

Collapse of V,-He, complexes

Growth of He bubbles
Density of He atoms in He
bubbles decreases.
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500°C: V-He, complexes dissociate
700°C: V,,-He, complexes dissociate
1100°C: Large He bubbles dissociate




Positron annihilation lifetimes in fission neutron—irradiated Ni

Pure Ni
— Ty
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Neutron dose, /dpa

Void growth is observed by TEM in more than 0.01dpa,
but positron lifetime is saturated.



Positron annihilation lifetime measurement system

(1.28MeV)

CFD

E;EEF:Z

delay

Fast Coinci.

T

Stop
(0.511MeV)

CF

D

gate

\ 4

Conventional measurement system

v

TAC

delay

'

MCA

(two-detector system)

QUAD CFD

!

Yavepro 7300 Y ¥

coincidence

ORTEC 4144

Digital
Oscil loscope

Improved measurement system
using a digital oscilloscope
(three-detector system)

Merit: Reduction of background
Demerit: Decrease of count rate




Positron annihilation lifetime spectrum

105 T I T I T I T I

Unirradaiated 316LN
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Counts
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(1ch = 10ps)

This spectrum is composed of these two curves.



withdraw fluid by syringe

place a few drops to kapton film
C—1 ]

Strong incandescent lamp

Yy & 4

Kapton film (25um thick)

dry for about 10 minutes

1
“Na -

sandwich in source between kapton films

(sodium chloride _ wait the all night till bond dries

solution)

spread epoxy bond



Set of samples

Na-22

Sample

Kapton film (sometimes Mylar film)

A part of positrons annihilate in the Kapton film.

Ratio of positrons, which annihilate at Kapton film, depends on the thickness.

5um: ~13%, 10um: ~20%, 25um: ~33%



How to make lifetime spectrum

300

10% - l\g Well-annealed Ni 4 '
A 107 ]
103 i .5 ‘l. ‘o' 'l.. .....
% . 3 . ... .
8 102 B . 10 ._l .-'"_'.... —
10° ‘55’%"?
C 10% - .
100 . 1 . 1 1 . 1 . 1
0 200 400 600 800 1000
Ch | (1Ch=10
annel ( ps) 10! L _
Time difference 100 . . . .
200 220 240 260 280
Start signal Stop signal Time difference: 100ps

Time difference: 400ps

Total count of more than 1M is needed for good statistics.



Analysis of lifetime spectrum

We usually use PALSfit program,
which is developed by one group of Riso DTU.

T'(t)=[_T(x)G(t—x)dx+B
1 [G@)de=1

m:«%ﬁ?"'ﬁ"?;@?ﬁ T’: Lifetime spectrum (left figure)
T: Decay function

0 Y T Y — G: Time-resolution function
0 200 400 600 800 1000 8: Backeround
Channel (1Ch=10ps) : g

Counts

One compo;ent ) G is given by a sum of two or three Gaussians
T(t)= 1e:xp(— ]
z-1 z-1
Two components
7 ¢ Ji y T: lifetime
T(t)="Lexp| —— |+-2exp| —— | : lifetime intensity
z-1 Tl 2'2 Z-2

Three components

I'(1)= 4 eXp(— t] o eXp(— tj o b exp(— t]
4 4 £ (% 3 (£



Without any defects With single vacancies

(sample contains only single vacancies)
A A

T, = <100ps

1
7=—=100ps
J) P

m

m

1
T, = = ~170-500ps

d

4, :positron annihilation rate in the matrix
4, : positron annihilation rate at the defect site

« . positron transition rate from the matrix to the defect site
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Normalized count
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F82H

Ratio to unirradiated F82H

- | - |
—s—electron rradiated
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