

<u>Slava Kuksenko¹</u>, Brian Hartsell ², Kavin Ammigan², Chris Densham³, Patrick Hurh², Steve Roberts¹

¹ University of Oxford, Oxford, UK,
² Fermi National Accelerator Laboratory, Batavia, USA
³ Rutherford Appleton Laboratory, Didcot, UK

<u>13th International Workshop on Spallation Materials Technology</u> 3rd of November 2016

Beryllium

- is extensively used as a material of neutrino target parts, for example as beam windows;
- is a promising candidate for future high-power neutrino sources

Operating conditions Gas production **Proton beam** Application Avg. T Peak T (appm/DPA) Total DPA parameters (°C) (°C) He Η Beam window 700 kW; 120 GeV; 200 300 ~ 0.23/yr >2000 >2000 (vacuum to air) ~1 Hz; σ_{rms} = 1.3 mm 700 kW; 120 GeV; Target 375 450 ~ 0.23/yr >2000 >2000 ~1 Hz; σ_{rms} = 1.3 mm

Possible irradiation effects:

- embrittlement

Expected working conditions for some parts of LBNF

- irradiation induced hardening
- swelling
- reduction of thermal conductivity

Experimental investigation

0

0

Investigation of the as-received and high-

Ion irradiation experiments – first results

energy proton irradiated beryllium

NuMI beam window experiments

300 kW NuMI beam window

120GeV proton beam

- about 3×10¹³ protons per pulse, 0.5 Hz
- 1.57×10²¹ protons during its lifetime
- 1.1mm beam sigmas, X and Y
- T ≈ 50°C
- Up to 0.5 dpa

	production in beryllium, appm/dpa				
SM-3 high-flux reactor (Russia)	330				
BOR-60 reactor (Russia)	280				
HFR, HIDOBE-01 irradiation campaign (Petten, Netherlands)	160				
Beryllium reflectors in the ISIS	220 (TS1)				
neutron source (RAL, UK)	110 (TS2)				
DEMO fusion reactor	600				
NuMI beam window (FNAL, USA)	4000				

NuMI beam window: MARS data for dose and transmutation

Considerable variation of "dpa" and transmutants production is likely to produce non-homogeneous changes across the surface of Be window.

Materials

PF-60

	Max impurities, appm
AI	170
С	450
Fe	130
Mg	810
0	2900
Si	130
Ν	195
Be	balance

Polarised-light optical microscopy images

Surface normal-projected inverse pole figure orientation map, with high angle grain boundaries

- Beryllium contains a lot of inpurities;
- the material has a strong (0001) texture

PF-60/cross rolled

- Industrial beryllium is a non-homogeneous material.
- "White contrast particles" on SEM images (in the SE2 detector) are mainly inside grains

Carbon

STEM image of a near-grain boundary area in unirradiated PF-60 beryllium from the periphery of the NuMI beam window.

PF-60/cross rolled

STEM image of a near-grain boundary area in radiated (0.45 dpa) PF-60 beryllium from the periphery of the NuMI beam window.

PF-60	Max impurities, appm	Impurities in Beryllium matrix (APT), appm
С	450	15±10
Fe	130	55±10
Ni	31	25±10
Cu	14	15±10
0	2900	70±30
Al	170	Not detected (ND)
Mg	810	ND
Si	130	ND
N	195	ND

APT of beryllium matrix in unirradiated PF-60 beryllium from the periphery of the NuMI beam window.

- All the detected impurities, except Fe, are randomly distributed in the beryllium matrix.
- a linear segregation of Fe atoms was detected, and is probably an atmosphere around a dislocation line

APT of beryllium matrix in irradiated and non-irradiated beryllium

APT of beryllium matrix in irradiated and non-irradiated beryllium (PF-60): chemical data

	Max impurities, appm	Impurities in Beryllium matrix (APT), appm	Impurities in Beryllium matrix after p-irradiation 0.41 dpa (APT), appm
C	450	15±10	Cannot be measured
Fe	130	50±10	50±10
Ni	31	25±10	22±10
Cu	14	15±10	15±10
0	2900	70±30	90±30
AI	170	ND*	Lithium: 400±20 appm
Mg	810	ND	Others (no hydrogen): 170±40 appm
Si	130	ND	
Ν	195	ND	

- Lithium becomes the major (solid) impurity in beryllium matrix (ca. 900 appm/dpa)
- Transmutant Li is homogeneously distributed
- Impurities (Fe, Ni, Cu, C, O) are still homogeneously distributed

APT of beryllium matrix in irradiated beryllium: Lithium

NuMI beam window experiments

Irradiated

<u>Radiation induced</u> <u>degradation?</u>

FIB preparation for EBSD analysis

Transition form transgranular fracture to grain boundary/mixed mode fracture

- > Non-irradiated beryllium mainly transgranular cleavage
- Grain-boundary fracture at low T irradiation may be caused by strengthening of the matrix or "weakening" of GBs

 More data on fracture behaviour will come

- Transmutant Li can be one of the reasons of properties degradation under proton irradiation
- But detailed TEM and He/H transmutants distribution analysis is needed
- Micromechanical tests should be made

He implantation experiments: preliminary results

He implantation in Be through Al degrader (1µm), high energy implantation

Steps	1	2	3	4	5	6	7	8	9	10	11
Energy, MeV	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2
He ions/cm ² , ×10 ¹⁶	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.83	0.83	0.90	1.20

• Twinning is an important deformation mechanism under compression

PF-60 cross rolled 7/15/2016 dwell mode SE ΗV HFW det frame mag 🎛 - 20 µm curr 2:51:19 PM 30 us 30.00 kV 40 pA 104 um ETD 48.9 s 2 000 x Helios

Micromechanical tests samples preparation

Micromechanical tests: samples preparation

Conclusions

- Beryllium is highly non-homogeneous at macroscale and highly anisotropic material.
- Industrial beryllium is an impure alloy.
- Impurities strongly create precipitates, segregate to BeO and dislocations
- Beryllium matrix (PF60) has some quantity of homogeneously distributed carbon, iron, nickel and cupper
- Proton irradiation cause Li production, which is homogeneously distributed (T=50°C)
- Signs of irradiator induced embrittlement and change in fracture mode (from intrato inter-granular) under high energy proton irradiation
- He implantation to 0.1 dpa introduces significant hardening of berillium

