

EUROPEAN SPALLATION SOURCE

Material Selection of the Beam Profile Monitoring Devices at ESS Target Station

Y. Lee, M. Hartl, C. Thomas, T. Shea, J. Habainy

www.europeanspallationsource.se 16-11-14

EUROPEAN SPALLATION SOURCE

Need for beam profile monitoring (BPM)

- ESS beam parameters
 - 2 GeV, 5 MW proton beam
 - 4% duty factor
 - 14 Hz repetition rate
 - Pulse duration of 2.86 ms
 - 2.5 mA (5 MW) time averaged beam current
 - 62.5 mA (125 MW) beam current during pulse
- BPM is required to avoid a target systems failure due to an anomalous beam.
 - Beam current density
 - Beam halo distribution
 - Beam position

Target Monolith – Beam Diagnostics

Design Beam Profile on Target

EUROPEAN SPALLATION SOURCE

Δ

- Beam on target requirements:
 - Beam footprint enclosing
 97.5% beam fraction: 180 mm
 (H) × 60 mm (V)
 - Beam footprint enclosing
 99.9% beam fraction: 200 mm
 (H) × 64 mm (V)
 - Nominal time-averaged peak current density: 56 μA/cm²
 - Maximum time-averaged peak current density: 81 μA/cm²
 - Max displacement of footprint from nominal position: ±5 mm (H), ±3 mm (H)
- Beam on PBW:
 - Higher beam current density, assuming linear optics.

Beam Profile Monitoring Syatem

- All the BPM systems planned is based on beamintersecting
 - High irradiation damage induced short service lifetime
 - High thermal load induced structural failure
- Baseline scope of the BPM Systems at the Target Station:
 - Multi-wire profile monitor (MWPM):
 - Set of conducting wires intersecting proton beam
 - Aperture monitor:
 - Set of thin metal blades intersecting the proton beam edge
 - Luminescent coating:
 - Proton beam window (PBW)
 - Beam entrance window (BEW) of the target wheel

Proton Beam Instrumentation Plug

Material choice for harp

- Candidate Materials
 - Pure tungsten: SNS
 - Tungsten-Rhenium alloy: BLIP
 - SiC: JSNS, ISIS, LANSCE
- Material Selection Criteria
 - Disturbance to beam optics
 - Signal characteristics
 - Lifetime limited by radiation damage
 - Endurance to thermal and mechanical loads

• There are five layers of harp made of 100 um thick wires with a pitch of 2 mm.

optics

- For a pencil beam, the beam diverges with:
 - SiC harp: 0.06 mrad
 - W harp: 0.25 mrad

Effect of harps on beam-on-target requirement

EUROPEAN SPALLATION SOURCE

9

Harp	Envelop 180 mm (H) × 60 mm (V)	Envelop 200 mm (H) × 64 mm (V)
No harp	99.38%	99.89%
SiC harps	99.37%	99.88%
W harps	99.33%	99.85%

• With the W harps, the beam shooting off the target is in an order of 1 kW compared to SiC harps.

Signal strength

- Negative charge deficiency
 - Secondary electron emission (SEE)
 - Ionization, diffusion of slow secondaries to the surface, subsequent escape of electrons
 - Secondary electron yield (SEY) is calculated by an empirical formula:

$$SEY = \frac{P \cdot d_s}{E^*} \frac{dE}{dz}$$

- Recoiled delta ray electrons
 - Directly calculated by FLUKA

Signal Strength

EUROPEAN SPALLATION SOURCE

Harp Material	dE/dz [MeV/cm]@2Ge V-H ⁺	Secondary electron yield	Delta ray electron yield	Total Yield	Benchmark
W	24.4	0.049	0.026	0.075	0.07 SNS: 1 GeV-H⁺
SiC	5.16	0.010	0.013	0.023	0.01 LANSCE: 0.8 GeV-H ⁺

The signal from the tungsten harp is more than three times higher.

Radiation Damage

Harp Material	Max. DPA Rate [dpa/hour]	Annual Beam on Target Time	Max. DPA per Year
W	0.012	5400	64.8
SiC	0.001	5400	5.4

- The tungsten harp at SNS and the SiC harp at TS2 of ISIS have been operating without failure since its commissioning of the facilities.
- The accumulated damage dose on the harp in both facilities is roughly equivalent to one year dose at ESS.

Benchmarking Institution	Harp Material	Total Beam Energy/Charge	Accumulated Max. DPA
ORNL-SNS	W	32000 MWh	70
ISIS-TS2	SiC	1.5 Ah	3

Early failure of W-Re Harp at BLIP

- The DBTT of W-Re alloy gets higher than pure tungsten after irradiation [H. Ullmaier, F. Carsughi, NIM-B 101, 1995]
- The thermal conductivity of W-Re alloy is lower than pure tungsten, which should lead to a higher thermomechanical stress and fatigue stress amplitude [M. Rieth et al, Tech- Rep.-KIT]

Thermal and mechanical properties

	Tungsten	SiC
Post-pulse maximum temperature	1420 K	660 K
Post-pulse maximum stress	77 MPa	76 MPa
Yield Stress/Flexural Strength	200 MPa	415 MPa

Tungsten vs. SiC

Properties	Tungsten	SiC	
Beam optics disturbance	-	0	
Δ-ray production		-	
Radiation damage limit	1 year@5 MW	1 year@5 MW	
Signal strength	+	-	
Surface corrosion	-	+	
Operation temperature	High	Medium	
Mechanical load during operation	High	Low	

• Silicon Carbide is preferred for the ESS application

Proton Beam Instrumentation Plug

Aperture Monitor

EUROPEAN SPALLATION SOURCE

- Material Selection: Nickel
 - The halo monitor mounted at the direct beam upstream of KHE-2 is made of 100 um thick nickel membrane.

A. Strinning, et. al. HB2010

Signal Strength: 100 um thin Ni-Diaphram

Facility	dE/dz [MeV/cm]	Secondary Electron Yield	δ-Ray Yield	Total Yield
PSI	16.7	0.033	0.023	0.056
ESS	13.6	0.027	0.019	0.046

Negative Net-Charge Deposition

ess

EUROPEAN SPALLATION SOURCE

• Δ-rays from harp and helium atmosphere

Δ-ray yield due to impinging δ-ray electrons

- The calculated $\delta\text{-rays}$ are in the energy range between 10 keV and 1 MeV
- Low energy δ -rays are stopped within the 100 um thickness of the Ni-diaphragm, creating negative net charge deposition.

Beam offset and δ -ray yield

EUROPEAN SPALLATION SOURCE

• As there are more protons bombarding the blade, the net charge yield turns to "positive"

Radiation Damage and Lifetime

E55

- Benchmarking: PSI
 - Integrated beam charge up to 2010: 120 Ah
 - Maximum integrated DPA: 100
- Aperture monitor at ESS
 - Maximum damage rate: < 10 dpa/year for 27000 MWh/y
 - The lifetime of the aperture monitor is conservatively estimated to be 10 years

Temperature at Aperture Monitor

 The dynamic temperature amplitude per pulse is less than 1 °C.

EUROPEAN SPALLATION

SOURCE

 A small beam offset will increase the maximum temperature amplitude per pulse rapidly.

- Δ-ray introduces negative charge deposition in the aperture monitor intersecting halo
 - During normal operation, the aperture monitor expects to produce noise signal.
 - In case of beam offset, more protons will be intersected by nickel diaphragms, producing "positive net charge deposition."

Luminescent coating

- Luminescent coatings on PBW and target for the beam profile imaging
- Baseline material:
 - Benchmarking SNS
 - Cr (1%) doped alumina
 (Al₂O₃)

Proton flux at BEW

EUROPEAN SPALLATION SOURCE

• Secondary protons from the harp

 $imes 10^{14}$

2.6

2.4

2.2

2

1.8

1.6

1.4

4

Neutron and gamma flux at BEW

Energy deposition and radiation damage at BEW

 The radiation damage doesn't follow the proton beam profile

EUROPEAN

SPALLATION SOURCE

 \rightarrow

EUROPEAN SOURCE

- Radiation induced luminosity degradation
- Excit Thomas Shea et al., "Luminescent materials development for beam-on-target imaging at the European Spallation Source."

- The SiC is chosen to be the baseline material for the harp
- The Ni-diaphragm for halo monitoring will generate noises during normal beam operation, due to δ-rays from the harp and upstream components. But, it should be able to detect the anomalous beam position offset.
- There is on-going research on the luminescent coating material. Currently, baseline material is Cr:Al₂O₃ as at SNS.

