
Introduction to 
Magnetic space groups

(Shubnikov groups)

Juan Rodríguez-Carvajal
Institut Laue-Langevin, Grenoble, France

E-mail: jrc@ill.eu

1



The magnetic moment (shortly called “spin”) of an atom can 
be considered as an “axial vector”. It may be associated to a 
“current loop”. The behaviour of elementary current loops 
under symmetry operators can be deduced from the 
behaviour of the “velocity” vector that is a “polar” vector.

A new operator can be introduced and noted as 1′, it flips 
the magnetic moment. This operator is called “spin reversal” 
operator or classical “time reversal” operator

Time reversal = spin reversal

(change the sense of the current)

1′ 

Magnetic moments as axial vectors
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Magnetic moments as axial vectors
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A general operator g = {h|th+n} acting on an atom rj in the cell at the origin 
(zero-cell) having a magnetic moment mj is transformed as follows:

The group R = {1, 1′} is called the time/spin reversal group
Magnetic point and space groups can be obtained as outer 
direct product of point and space groups with R. The 
operators of a magnetic group are called “primed” if they 
result from the combination of the crystallographic operator 
with the element 1′ of R. Those combined with 1 are called 
“unprimed”

The “signature” is  =  1 for unprimed elements 
and    = 1 for primed elements 4

Shubnikov Magnetic Space Groups
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The position of an arbitrary atom in the crystal described by a 

magnetic space group can be deduced using the following formula:

     
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For a primitive basis the indices li are integers. For a centred cell they can 

also be rational numbers. In general, the fractional coordinates giving the 

atom positions in the asymmetric unit are real numbers. 

l : index of a direct lattice point (origin of an arbitrary unit cell)

j : index for a Wyckoff site (orbit)

s: index of a sublattice of the j site

Shubnikov Magnetic Space Groups
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The magnetic moment of an arbitrary magnetic atom in the crystal can 

be deduced

 
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21 22 23

31 32 33
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the magnetic unit cell is used
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Magnetic moment of atoms in a crystal with a 

commensurate magnetic structure:

m m

m e e e

det(h) : determinant of the matrix corresponding to the operator g={h|th}

 : signature of the operator g,  =1 when g is not associated with time 

reversal, and  = -1 when g is associated with time reversal: g is primed.

Shubnikov Magnetic Space Groups
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Example from ITC: Space groups

International Tables of Crystallography (Volume A). 
Example: group number 46, Ima2

Site symmetry and positions of space group Ima2

(0, 0, 0)+ (½, ½, ½)+

8  c 1   (1) x, y, z (2) -x, -y, z (3) x+½, -y, z (4) -x+½, y, z

4  b m . .   ¼, y, z ¼, -y, z

4  a . . 2  0, 0, z ½, 0, z

Symmetry operations

For (0, 0, 0)+ set

(1) 1          (2) 2 0, 0, z (3) a    x, 0, z (4) m ¼, y, z

For (½ , ½ , ½)+ set

(1) t(½ , ½ , ½)           (2) 2(0,0, ½)    ¼,¼,z (3) c   x, ¼,z (4) n(0, ½ , ½) 0, y, z

Maximal non-isomorphic subgroups of Ima2

I [2] I 1 1 2  (C 2)  (1; 2)+

[2] I 1 a 1   (C c) (1; 3)+

[2] I m 1 1 (C m) (1; 4)+

IIa [2] P m a 2 1; 2; 3; 4

[2] P n c 2 1; 2; (3; 4) + (½ , ½ , ½)

[2] P n a 21 1; 3; (2; 4) + (½ , ½ , ½)

[2] P m c 21 1; 4; (2; 3) + (½ , ½ , ½)

IIb none

T- coset representatives

Can be interpreted as a 
“representation” of the 
symmetry operations



Magnetic space groups

Whatever crystallographic magnetic group, M, can be obtained as a 
subgroup of the outer direct product of R by the crystallographic group G: 

M  GR. 

The group G is always a magnetic group (“colourless”)
Paramagnetic (“grey”) groups are of the form:  P=G+G1′.

Nontrivial groups (“black-white” groups)
Constructive lemma: the magnetic groups derived from the 

crystallographic group G can be constructed considering the index 2 
subgroups H of G as constituting the “unprimed“ elements and the rest of 
operators, G  H, those that are multiplied by the time reversal operator.

The magnetic group is then related to the subgroup H  G (of index 2) 
by the expression: M = H + (G  H) 1′.

This is valid for all kind of groups: point groups, translation groups and 
space groups. This is a consequence of “primed” x “primed” = “unprimed”

8
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ITA: maximal subgroups and minimal super-groups of point groups

Example: construction of magnetic point groups

9
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It is easy to apply the constructive lemma to the 
crystallographic point groups and deduce that we have 32

trivial magnetic point groups (identical to the 32

crystallographic point groups), 32 paramagnetic groups,  and  
<3+3>+ (5)+(13+5)+ [5]+ [13+8]+3=58 black-white point groups. 

This is obtained by counting the number of lines connecting 
groups with subgroups of index 2 in the previous figure. 

The symbols <>, (), [] surrounding the figures refers to cubic, 
hexagonal-trigonal and tetragonal-orthorhombic groups; the 
absence of parenthesis for the last figure refers to 
monoclinic-triclinic point groups.

Example: construction of magnetic point groups
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Example: magnetic point groups from 4/m

Consider the point group G=4/m of order 8. Its subgroups of index 2 are H1=4, H2=

and H3=2/m. There are then four magnetic point groups derived from G, they have 

the following elements:
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Admissible point groups

4′

Action of 4’ when the 
spin is along its axis

Action of m when the 
spin is within it

4′

mm

Let us consider the magnetic point group M3=4′/m.

In magnetically ordered systems, the magnetic point group of 
a magnetic atom cannot be one of the paramagnetic groups.
Moreover many of the colourless and black-white magnetic 
point groups cannot be realized in ordered system.  

The point group 4′/m is an example 
of a non-admissible magnetic point 
group.
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Admissible point groups

Admissible magnetic point groups Admissible spin direction

1 Any direction [1]

2′ 2′/m′ m′m2′ Perpendicular to the 2-fold axis [3]

m′ Any direction within the plane [1]

m Perpendicular to the plane [1]

m′m′m Perpendicular to the unprimed plane [1]

2′2′2 Along the unprimed axis [1]

2 2/m m′m′2 Along the 2-fold axis [3]

4 4/m 42′2′ Along the four-fold axis [3] 

4m′m′ 2m′ 4/mm′m′ Along the four-fold axis [3] 

3 32′ 3m′ m′ Along the three-fold axis [4] 

6 6/m 62′2′ Along the six-fold axis [3] 

6m′m′ m′2′ 6/mm′m′ Along the six-fold axis [3] 

27 admissible magnetic point groups!
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Magnetic Lattices

For primitive Bravais lattices integer linear combinations of the 
three vectors {a1, a2, a3} generate the whole lattice: 

TP= {t | t=l1 a1+ l2 a2+ l3 a3, li}

If we consider centred lattices the whole group is generated not only 
by the integer linear combinations of the basis vector representing the 
conventional cell but by adding centring vectors tcn (n=1… m):

TC= {t | t=l1 a1+ l2 a2+ l3 a3 + n1 tc1+n2 tc2+ ... ncm tcm;  li, ni{0,1}}

The centring vectors have rational components when referred to the 
conventional basis: tci=q1i a1+ q2i a2+ q3i a3 (qi)

A subgroup, of index 2, of the translation group can be obtained just 
by suppressing half the translations, for instance if we take l1=2n we 
obtain a lattice L that is described with a unit cell with a1’=2a1. 

This lattice is generates a subgroup of index 2 of T (L  T, [i]=n(T)/ 

n(L)=2), the lost translations (T-L) can be associated with time reversal 
for constructing the magnetic lattice: ML=L + (T-L)1′. 
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Magnetic Lattices

Magnetic Lattices of 
the Triclinic System

Magnetic Lattices of 
the Monoclinic System

Open circles: Translations
Black circles: Anti-translations (primed)



Magnetic Lattices

Magnetic Lattices of the Orthorhombic System
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Magnetic Lattices

Magnetic Lattices of 
the Tetragonal System

Magnetic Lattices of the 
Hexagonal and Trigonal Systems
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Magnetic Lattices

Magnetic Lattices of 
the Cubic System
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Shubnikov Groups: Magnetic Space Groups
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The same procedure points groups and Bravais lattices can be 
applied to space groups. One obtains a total of 1651 types of 
Shubnikov groups. 

T1: 230 are of the form M0=G (“monochrome”, “colourless” groups), 
T2: 230 of the form P=G+G1′ (“paramagnetic” or “grey” groups) 

1191 of the form M= H + (G  H)1′ (“black-white”, BW, groups). 

T3: Among the BW group there are 674 in which the subgroup 
H  G is an equi-translation group: H has the same translation group 
as G (first kind, BW1).

T4: The rest of black-white groups, 517, are equi-class group 
(second kind, BW2). In this last family the translation subgroup 
contains “anti-translations” (pure translations associated with the 
spin reversal operator). 



Shubnikov Groups: Magnetic Space Groups
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There are two notations to denote the magnetic space groups: 
the Opechowsky-Guccione (OG) and the Belov-Neronova-
Smirnova (BNS) notations. They differ in the notation for the 
magnetic lattices and for the BW2 groups. In the BNS notations 
the primed elements do not appear in the symbol of the group, 
they can be deduced from the magnetic lattice type. 

In the BW1 groups (type 3) the subgroup of translations is the 
same as that of the space group of which they derive, so the 
spin reversal operator is not associated with translations: the 
magnetic unit cell is the same as the crystallographic cell.

In the BW2 groups (type 4) there are some translations 
associated with spin reversal, so that the “magnetic primitive 
cell” is bigger than the crystal primitive cell.  



Shubnikov Groups: Example using ITA
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The magnetic space groups can be constructed using the 
International Tables of Crystallography (Volume A). 
Example: group number 46, Ima2

Site symmetry and positions of space group Ima2

(0, 0, 0)+ (½, ½, ½)+

8  c 1   (1) x, y, z (2) -x, -y, z (3) x+½, -y, z (4) -x+½, y, z

4  b m . .   ¼, y, z ¼, -y, z

4  a . . 2  0, 0, z ½, 0, z

Symmetry operations

For (0, 0, 0)+ set

(1) 1          (2) 2 0,0,z (3) a    x,0,z (4) m ¼, y,z

For (½ , ½ , ½)+ set

(1) t(½ , ½ , ½)           (2) 2(0,0, ½)    ¼,¼,z (3) c   x, ¼,z (4) n(0, ½ , ½) 0, y, z

Maximal non-isomorphic subgroups of Ima2

I [2] I 1 1 2  (C 2)  (1; 2)+

[2] I 1 a 1   (C c) (1; 3)+

[2] I m 1 1 (C m) (1; 4)+

IIa [2] P m a 2 1; 2; 3; 4

[2] P n c 2 1; 2; (3; 4) + (½ , ½ , ½)

[2] P n a 21 1; 3; (2; 4) + (½ , ½ , ½)

[2] P m c 21 1; 4; (2; 3) + (½ , ½ , ½)

IIb none



Shubnikov Groups: Example using ITA
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The groups I correspond to the translationengleiche of t-subgroups and the groups 

II to the klassengleiche or k-subgroups that are also subdivided in order to distinguish 

those having the same conventional cell (IIa) from those having a multiple cell (IIb). 

The division I and II correspond to the BW1 and BW2 respectively. 

Applying the formula M = H + (G  H) 1′ we obtain:

Colourless trivial magnetic group: M0 = I m a 2 = {1, 2z, ay, mx}T

For simplicity we remove the translation group and use only the coset 

representatives.

I M1 = I 1 1 2   +(I m a 2 – I 1 1 2 )1′ = {1, 2z}+{ ay, mx}1′= I m′ a′ 2

M2 = I 1 a 1   +(I m a 2 – I 1 a 1 )1′ = {1, ay}+{ 2z, mx}1′= I m′ a 2′

M3 = I m 1 1  +(I m a 2 – I m 1 1)1′ = {1, mx }+{2z, ay}1′= I m a′ 2′

For the BW2 groups, the translation subgroup is that formed by integer linear 

combinations of conventional cell parameters. The centring translations tc=(½, ½, ½)

become anti-translations, so the magnetic lattice contains the following set of 

translations and anti-translations 
L= {t | t=l1 a1+ l2 a2+ l3 a3;  li}
L′= (T-L)1′= {t′ | t′=l1 a1+ l2 a2+ l3 a3 + tc;  li}



Shubnikov Groups: Example using ITA
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IIa We write below the BW2 groups using the data of the ITA and show the BNS

and the OG notation. It is clearly seen that the BNS notation correspond directly to the 

subgroups written in ITA by putting the lattice symbol PI for stating that an original 

body centred lattice becomes primitive and the centring translations become anti-

translations. None of the generators appearing in the symbol is primed. This is a 

characteristic of the BNS notation for all BW2 groups. 

On the contrary the OG conserves the original HM symbol changing the lattice type to 

IP and using primed generators when they appear. From the information given in the 

decomposition of the magnetic group in terms of translations and anti-translations one 

can derive easily the BNS (makes reference to the coset representatives with respect to

L) or the OG notation (makes reference to the coset representatives with respect to L′).

ITA          Notations:                              BNS OG

[2] P m a 2 M4 ={1, 2z, ay, mx}L+{1, 21z, cy, nx}L′  = PI m a 2 IP m a 2

[2] P n c 2 M5 ={1, 2z, cy,  nx}L +{1, 21z, ay, mx}L′= PI n c 2 IP m′ a′ 2

[2] P n a 21 M6 ={1, ay, 21z, nx}L+{1, 2z, cy, mx}L′  = PI n a 21 IP m′ a 2′

[2] P m c 21 M7 ={1, mx, 21z, cy}L+{1, 2z, ay, nx}L′  = PI m c 21 IP m a′ 2′
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Magnetic Structure Description and Determination

2001: Daniel B. Litvin provides for the first time the full description of 
all Shubnikov (Magnetic Space) Groups. Acta Cryst. A57, 729-730

http://www.bk.psu.edu/faculty/litvin/home.html
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Magnetic Structure Description and Determination

We are concerned here with the 
tables of Magnetic Groups, but 
many other papers from D.B. Litvin 
can be downloaded from its 
personal page at

http://www.bk.psu.edu/faculty/litvin/

The first part is a comprehensive 
introduction to the tables and 
the second part contain each 
individual Magnetic Space Group 
item with Wyckoff positions and 
diagrams
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Magnetic Structure Description and Determination

OG: P2cm’mm
BNS: Panma OG-BNS transformation: (1/2,1/2,1/2; c,-b,2a) 

Group Ordering Number (BNS):  548,  BNS: 62.450,  OG: 59.9.486
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Magnetic Structure Description and Determination

Only recently the magnetic space groups have been made 

available in a computer database

Magnetic Space Groups

Compiled by Harold T. Stokes and Branton J. Campbell

Brigham Young University, Provo, Utah, USA

June 2010

These data are based on data from:

Daniel Litvin, Magnetic Space Group Types,  

Acta Cryst. A57 (2001) 729-730. 

http://www.bk.psu.edu/faculty/litvin/Download.html
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Shubnikov Groups: Computing tools
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Shubnikov Groups: Computing tools
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Shubnikov Groups: Computing tools

The program Mag_Info has been included, as a console 
application, for obtaining information about magnetic 
space groups. In the near future this program will be 
extended with a GUI and a wizard to create PCR files for 
magnetic structures using Shubnikov groups in whatever 
setting. 

The program reads the database 'magnetic_data.txt' compiled
by Harold T. Stokes and Branton J. Campbell (Brigham Young 
University, Provo, Utah, USA) based on data from: Daniel 
Litvin,"Magnetic Space Group Types", Acta Cryst A57 (2001) 729.

http://www.bk.psu.edu/faculty/litvin/Download.html 
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Shubnikov Groups: Computing tools
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Shubnikov Groups: Computing tools
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Programs for symmetry analysis

The irreducible representations of space groups can be 
obtained consulting tables or using computer programs for 
calculating them.

The basis functions of the irreducible representations 
depend on the particular problem to be treated and they 
have to be calculated by using projection operator formula. 
A series of programs allow these kind of calculations to be 
done. Doing that by hand may be quite tedious and prone to 
errors.

Concerning magnetic structures three programs are of 
current use: BasIreps (J. Rodríguez-Carvajal), SARAh
(Andrew Wills) and MODY (Wiesława Sikora). One can use 
also BCS (Perez-Mato et al.) or ISODISTORT (B.Campbell
and H. Stokes)



34

Programs for symmetry analysis

A series of computing tools for 

crystallography including magnetic 

structures are available at Bilbao 

Crystallographic Server
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Programs for symmetry analysis
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Programs for symmetry analysis

A huge amount of work on symmetry has been developed by Harold 

Stokes, Dorian Hatch and Branton Campbell. 

Stokes developed ISOTROPY and many algorithms for working with 

space groups and representations. Together with the programs they 

have made available databases to be used by external software
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- FullProf is now able to produce a magnetic CIF file 
(extension mCIF) for conmmensurate magnetic structures 
described in the magnetic cell. This mCIF file can be 
directly read by FP_Studio and also by the program 
VESTA.

The program converts the user-description of the magnetic 
structure, using the crystal cell and propagation vector and 
MSYM operators or basis functions, to the magnetic cell 
with all the magnetic atoms inside that cell. 

This mCIF file may be used to determine the Shubnikov 
group of the used model thanks to the program ISOCIF 
that can be executed via the Web at 
http://stokes.byu.edu/iso/isocif.php

New facilities for Magnetic Structures in FullProf



38

New facilities for Magnetic Structures in FullProf

A new option for reading symmetry operators for magnetic 
structures in FullProf has been implemented.
These operators are for commensurate structures and the 
mix in some sense SYMM and MSYM operators.
The value Isy=2 is used to inform the program that this kind 
of operator will be provided. Four forms are recognized by 
FullProf, examples of these operators for are given below:

1->  SHUB   x+1/2,-y,z  -u,v,-w

2->  SHUB   x+1/2,-y,z  -mx,my,-mz +1

3->  SHUB   x+1/2,-y,z  +1 

4->  SHUB   x+1/2,-y,z,+1

The three operator are identical (the +1 indicated that time reversal is 
not associated to the operator, a -1 indicates the opposite situation). The 
keyword SHUB is not strictly needed, it may be replaced by any word or 
number but it cannot be omitted. 
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New facilities for Magnetic Structures in FullProf

The complete list of symmetry operators corresponding 
to a particular setting of any magnetic space group may 
be obtained through the Bilbao Crystallographic Server 
using the programs MAXMAGN or STRCONVERT.

A console program converting mCIF files (as produced by 
the Bilbao Crystallographic Server or by ISOCIF) to PCR 
files has been included in the new FullProf Suite. 
The console program is called mCIF_to_PCR and will be 
extended with a GUI in the near future. 
Presently the provided PCR file is adequate for a 
simulation and the user should change by hand the 
parameters.
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New facilities for Magnetic Structures
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The introduction of 

superspace approach was 

a breakthrough that 

allowed to treat “aperiodic 

crystals” diffraction data

Pim de Wolff (1919–1998), 
Delft Institute of Technology, 
The Nederland

Superspace Symmetry
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Seminal papers on 
superspace approach

Wolff, P. M. de (1974). Acta 
Cryst. A30, 777-785.

Wolff, P. M. de (1977). Acta 
Cryst. A33, 493-497.

Wolff, P. M. de, Janssen, T. 
& Janner, A. (1981). Acta 
Cryst. A37, 625-636.

Superspace Symmetry
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Superspace Symmetry

Awarded with the tenth Ewald Prize for “the development 
of superspace crystallography and its application to the 
analysis of aperiodic crystals” (Montreal 2014)
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Superspace and Representations

Acta Cryst A66, 649 (2010)
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Magnetic superspace groups

The future of Magnetic Crystallography is 
clearly an unified approach of symmetry 
invariance and representations

Journal of Physics: Condensed Matter 24, 163201 (2012)
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Superspace operations

4

4 ,0 , 4 , 4( ) [ sin(2 ) cos(2 )]

( , | ) 1( ) 1( )

r r kr

M M M M

t

l l

ns nc

n

b

x

x nx nx

time reversal otherwise

  

  

   



  

    

  

l

R

The application of (R, | t) operation to the modulated structure 

change the structure to another one with the modulation functions 

changed by a translation in the fourth coordinate

The original structure can be recovered by a translation in the 

internal space and one can introduce a symmetry operator 

'

4( )M M x   

( , | , )t R
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k k HIR   RR

HR is a reciprocal lattice vector of the basic structure and is 

different of zero only if k contains a commensurate component.

If in the basic structure                               their atomic 

modulation functions are not independent and should verify

( | )t r r  R l

4 0 4

4 0 4

0

( ) det( ) ( )

( ) ( )

M H r M

u H r u

kt

I

I

R x x

R x x

  

  

 

  

  

 



 

R

R

R R

R

If                      belongs to the (3+1)-dim superspace group of an 

incommensurate magnetic phase, the action of R on its propagation 

vector k necessarily transforms this vector into a vector equivalent to 

either k (RI = +1) or -k (RI = -1).

( , | , )t R

Superspace operations
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( , 1| , )t k t 1The operators of the form:                           constitute the lattice 

of the (3+1)-dim superspace group 

Using the above basis the we can define 3+1 symmetry 

operators of the form:

( , 1|100, ),( , 1| 010, ),( , 1| 001, ),( , 1| 000,1)x y zk k k      1 1 1 1

The basic lattice translations are:

1 2 3 0

11 12 13

21 22 23

1 2 3 0

31 32 33

1 2 3

( , | , ) ( , | ) ( , , )

0

0
( , , , )

0

t t t kt

t

S S

S S

R R R I

t t t

R R R

R R R
t t t

R R R

H H H R

   

 
 
  
 
 
 

    



R R

R

The operators of the magnetic superspace groups are the same a those 

of superspace groups just extended with the time inversion label 

Superspace operations
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Simplified Seitz symbols for 3+1 symmetry operators

1 2 3 0 0

1 2 3 0 1 2 3 0 1 2 3 0

( , | , ) ( , | ) ( , , , )

( , | , ) { , | } { | } { ' | }

1 1 1 1 1
( , | 00 , ) { , | 00 } *

2 2 2 2 2

t t t kt

t

k c

S S S t t t

t t t t t t or t t t

with

   

 

  

     

     

   

R R

R R R R

R R

Simple example

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

11'( )0

{1| 0000} , , , , 1

{1| 0000} , , , , 1

{1' | 0001/ 2} , , , 1/ 2, 1

{1' | 0001/ 2} , , , 1/ 2, 1

P s

x x x x

x x x x

x x x x

x x x x



    

 

     



Superspace operations
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4

4 ,0 , 4 , 4( ) [ sin(2 ) cos(2 )]

r r kr

M M M M

l l

ns nc

n

x

x nx nx

  

  

  

    

l

  , ,

1

( ) | | ( ) {2 }
2

M M
F H k H k H k Hr

n
mc ms

mag

i
m p f m T m exp i




   

 

 




Simplified magnetic structure 

factor in the superspace 

description with the notation used 

in JANA-2006

Magnetic Structure Factor
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   

{ 2 } { 2 }k k

k k

M S k M krl lexp i exp i        l

, ,

1 1
( )exp{ 2 } ( )exp{ 2 }

2 2
k k k k k kS R I M M krc si i i i            

 

 

1

, ,

1

( ) {2 ( ) }

1
( ) ( ) {2 }

2

k

k k

M h S H k r

M h M M Hr

n

n

c s

p f h T exp i

p f h T i exp i





 

 





   


    






Simplified magnetic structure factor in the description 

used in FullProf (with notations adapted to those used 

in superspace approach)

Magnetic Structure Factor



Thank you for 
your attention!
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