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Magnetic dipoles
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Magnetic dipole moment in classical electromagnetism
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Dirac postulated in 1928 that 
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Magnetic moment
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The gyromagnetic ratio is defined as the ratio of the 

magnetic dipole moment to the total angular momentum
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Bohr Magneton
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Magnetic properties of the neutron
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Gyromagnetic ratios of common spin-1/2 particles

Electron: 1.76105 MHz/T

Proton:            267 MHz/T

Neutron:          183 MHz/T

The neutron moment is around 960 times smaller that the 

electron moment.

proton neutron

Nuclear magnetons: 
2

N

p

e

m
  p=2.793N n=1.913N

1.913μ σn n N nwith    For neutrons:

Magnetic properties of the neutron

7



8

core

Ni2+

Atoms/ions with unpaired electrons

m = - gJ B J  (rare earths)

m = - gS B S  (transition metals)

Intra-atomic electron correlation

Hund’s rule: maximum S/J 
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Paramagnetic state: 

Snapshot of magnetic moment configuration

Jij

 S Sij ij i jE J  

0Si 

What is a magnetic structure?
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What is a magnetic structure?

Ordered state: Anti-ferromagnetic 

Small fluctuations (spin waves) of the static configuration

 S Sij ij i jE J  

Jij
0Si 

Magnetic structure:

Quasi-static configuration of magnetic moments
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Ferro Antiferro

Very often magnetic structures are complex due to : 
- competing exchange interactions (i.e. RKKY)
- geometrical frustration
- competition between exchange and single ion anisotropy
- . . . . . . . . . . 

Types of magnetic structures



12

“Transverse”

“Longitudinal”

Amplitude-modulated or Spin-Density Waves

Types of magnetic structures
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Spiral

Cycloid

Types of magnetic structures
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Types of magnetic structures

Conical

The (magnetic) structure of 
crystalline solids possess always  a 
series of geometrical 
transformations that leave invariant 
the atomic (spin) arrangement.

These transformations constitute a 
symmetry group in the mathematical 
sense: point groups, space groups, 
Shubnikov groups, superspace 
groups, …
The Shubnikov groups describe 
commensurate magnetic structures 
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The position of atom j in 

unit-cell l is given by:

Rlj=Rl+rj

where Rl is a pure lattice 

translation

Rl

rj

mlj

Description of magnetic structures: k-formalism 
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Formalism of propagation vectors

 
 
 

k

k kRSm ljlj iexp 2


 jj kk- SS

Necessary condition for real mlj

cb acb arRR jjjjllj zyxlll  321

Rl

rj

mlj

Whatever kind of magnetic structure in a crystal 
can be described mathematically by using a Fourier 
series
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Formalism of propagation vectors

A magnetic structure is fully described by:

i) Wave-vector(s) or propagation vector(s) {k}.

ii) Fourier components Skj for each magnetic atom j and 
wave-vector k, Skj is a complex vector (6 components) !!!
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Formalism of k-vectors: a general formula 

 

{ 2 }k

k

m S kRljs js lexp i 


 jsjs kk- SSNecessary condition for real moments mljs 

l : index of a direct lattice point (origin of an arbitrary unit cell)
j : index for a Wyckoff site (orbit)
s: index of a sublattice of the j site

General expression of the Fourier coefficients (complex vectors)  for 
an arbitrary site (drop of js indices ) when k and –k are not equivalent:

1
( )exp{ 2 }

2
k k k kS R Ii i   

Only six parameters are independent. The writing above is convenient 
when relations between the vectors R and I are established (e.g. when 
|R|=|I|, or R . I =0) 
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Single propagation vector: k=(0,0,0)

 

2k k

k

m S kR Slj j l jexp{ i }  
• The magnetic structure may be described within the 

crystallographic unit cell
• Magnetic symmetry: conventional crystallography plus

spin reversal operator: crystallographic magnetic groups 

The propagation vector k=(0,0,0) is at the centre of the Brillouin Zone.  
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Single propagation vector: k=1/2H

 

 
( )

exp{ 2 } exp{ }k k

k

k

m S k R S H R

m S

lj j l j l

n l

lj j

i i

-1

   



  

REAL Fourier coefficients  magnetic moments

The magnetic symmetry may also be described using

crystallographic magnetic space groups  

The propagation vector is a special 

point of the Brillouin Zone surface 

and k= ½ H, where H is a reciprocal 

lattice vector.  
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Fourier coefficients of sinusoidal structures

1
( 2 )

2
k kS uj j j jm exp i  

- k interior of the Brillouin zone (IBZ)  
(pair k, -k)

- Real Sk, or imaginary component in the 
same direction as the real one

exp( 2 ) exp(2 )
k -k

m S kR S kRlj j l j li i   

cos ( )
k

m u kRlj j j l jm 2  
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Fourier coefficients of helical structures

1
[ ] ( 2 )

2
k kS u vj uj j vj j jm im exp i   

- k interior of the Brillouin zone
- Real component of  Sk perpendicular to the 
imaginary component

cos ( ) sin ( )
k k

m u kR v kRlj uj j l j vj j l jm 2 m 2      
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Note on centred cells

k=(1,0,0) or (0,1,0) ?

 

{ 2 }k

k

m S kRlj j lexp i 

cb acb arRR jjjjllj zyxlll  321

The translation vectors have fractional components 
when using centred cells. The index j runs on the 
atoms contained in a PRIMITIVE cell

The k vectors are 
referred to the reciprocal 
basis of the conventional 
direct cell and for centred 
cells may have values > 1/2
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How to play with magnetic structures and the k-vector formalism

{ }

{ 2 }k

k

m S kRljs js lexp i 

The program FullProf Studio performs the above sum and 
represents graphically the magnetic structure.
This program can help to learn about this formalism because 
the user can write manually the Fourier coefficients and see 
what is the corresponding magnetic structure immediately.

Web site: http://www.ill.eu/sites/fullprof
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Magnetic scattering: Fermi’s golden rule

Differential neutron cross-section:

This expression describes all processes in which:

- The state of the scatterer changes from  to ’

- The wave vector of the neutron changes from k to k’ where k’ 

lies within the solid angle d

- The spin state of the neutron changes from s to s’

22
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   




   
     

  

Vm = n.B is the potential felt by the neutron due to the magnetic 

field created by moving electrons. It has an orbital an spin part.
26



Magnetic scattering: magnetic fields

Magnetic field due to spin and orbital moments of an electron:

0

2 2

ˆ ˆ2

4

μ R p R
B B B

j jB
j jS jL

R R

 



    
       

   
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O

Rj

sj

j

pj

R

R+Rj

σn

μn

Bj

Magnetic vector potential 

of a dipolar field due to 

electron spin moment 

Biot-Savart law for a 

single electron with 

linear momentum p



Magnetic scattering: magnetic fields

Evaluating the spatial part of the transition matrix element for 

electron j:

ˆ ˆ ˆ' exp( ) ( ) ( )k k QR Q s Q p Q
j

m j j j

i
V i

Q

 
     

 

( ')Q k k Where                           is the momentum transfer

28

Summing for all unpaired electrons we obtain:

ˆ ˆ ˆ ˆ' ( ( ) ) ( ) ( ( ). ). ( )k k Q M Q Q M Q M Q Q Q M Q
j

m

j

V      

M(Q) is the perpendicular component of the Fourier 

transform of the magnetisation in the scattering object to the 

scattering vector. It includes the orbital and spin contributions.



M(Q) is the perpendicular component of the Fourier transform 

of the magnetisation in the sample to the scattering vector.

Magnetic structure factor

Magnetic interaction vector

Elastic scattering:

Neutrons only see the components of the magnetisation that 

are perpendicular to the scattering vector

M

M 

Q=Q e

Magnetic scattering
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Scattering by a collection of magnetic atoms

30

We will consider in the following only elastic scattering.

We suppose the magnetic matter made of atoms with unpaired 

electrons that remain close to the nuclei. 

R R re lj je 

( ) exp( · ) exp( · ) exp( · )M Q s Q R Q R Q r s
j

e e lj je je

e lj e

i i i   
3

3

( ) exp( · ) ( )exp( · )

( ) ( )exp( · ) ( )

F Q s Q ρ r Qr r

F Q m r Q r r m

j je je j

e

j j j j j

i r i d

i d f Q

 

 

 



( ) ( )exp( · )M Q m Q Rlj lj lj

lj

f Q i

Vector position of electron e:

The Fourier transform of the magnetization can be written in 

discrete form as



Scattering by a collection of magnetic atoms
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3

3

( ) exp( · ) ( )exp( · )

( ) ( )exp( · ) ( )
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F Q m r Q r r m
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e

j j j j j

i r i d

i d f Q

 

 

 


If we use the common variable 

s=sin/, then the expression of 

the form factor is the following:
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      



Elastic Magnetic Scattering by a crystal (1)
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( ) ( )exp( · )M Q m Q Rlj lj lj

lj

f Q i

The Fourier transform of the magnetization of atomic discrete 

objects can be written in terms of atomic magnetic moments and 

a form factor for taking into account the spread of the density 

around the atoms

For a crystal with a commensurate magnetic structure the content 

of all unit cell is identical, so the expression above becomes 

factorised as:

( ) ( )exp( · ) exp( · ) ( )exp(2 · )M Q m Q r Q R m H rj j j l j j j

j l j

f Q i i f Q i   

The lattice sum is only different from zero when Q=2H, where H is 

a reciprocal lattice vector of the magnetic lattice. The vector M is then 

proportional to the magnetic structure factor of the magnetic cell



Elastic Magnetic Scattering by a crystal (2)
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( ) exp( 2 ) ( )exp(2 · )k

k

M h S kR h Rj l lj lj

lj

i f h i  

For a general magnetic structure that can be described as a 

Fourier series:

( ) ( )exp(2 · ) exp(2 ( )· )

( ) ( )exp(2 ( )· )

k

k

k

M h h r S h k R

M h S H k r

j j j l

j l

j j j

j

f h i i

f Q i

 



 

 

  



The lattice sum is only different from zero when h-k is a reciprocal 

lattice vector H of the crystallographic lattice. The vector M is then 

proportional to the magnetic structure factor of the unit cell that 

now contains the Fourier coefficients Skj instead of the magnetic 

moments mj.

 
 
 

k

k kRSm ljlj iexp 2
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Diff. Patterns of magnetic structures

Magnetic reflections:   indexed  

by a set of propagation vectors {k}

h    is the scattering vector indexing a magnetic reflection   

H is a reciprocal vector of the crystallographic structure

k is one of the propagation vectors of the magnetic structure 

( k is reduced to the Brillouin zone)

Portion of reciprocal space 

Magnetic reflections

Nuclear reflections

h = H+k
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Diffraction patterns of magnetic structures

Cu2+ ordering

Ho3+ ordering
Notice the decrease 
of the paramagnetic 
background on Ho3+

ordering
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Diffraction patterns of magnetic structures

Nuclear contribution in blue

Conical structure with two propagation vectors

Magnetic structure of DyMn6Ge6



Elastic Magnetic Scattering by a crystal (3)
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From now the we will call M(h) the magnetic structure factor

( ) ( )exp(2 ( )· )kM h S H k rj j j

j

f Q i 

Where M(h) is calculated for a finite number of magnetic atoms 

inside the crystallographic unit cell. Notice that the magnetic 

moments do not appear directly in the expression of M(h).

And its perpendicular component to h, M(h), is the magnetic 

interaction vector of the crystallographic unit cell. The elastic 

cross section (intensity of a Bragg reflection) is then:

2 *

0( ) M M
d

r
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



 

 
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Group representations
(representation analysis)

39
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Magnetic Structure Description and Determination

Bertaut is the principal developer of 
the representation analysis applied 
to magnetic structures

Representation analysis of magnetic 
structures
E.F. Bertaut, Acta Cryst. (1968). A24, 
217-231
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Magnetic Structure Description and Determination

After the first experiments in magnetic neutron diffraction done at 
Oak Ridge demonstrating the occurrence of antiferromagnetism, 
Bertaut went to the USA in 1951/1953 and worked with Corliss
and Hasting at the Brookhaven National Laboratory. From 1958 to 
1976 Bertaut was the head of the laboratory called  “Diffraction 
Neutronique” at the CENG in Grenoble.

After the first International Conference on Neutron Scattering 
(Grenoble, 1963) Bertaut and Néel pushed the French authorities 
to construct a nuclear reactor in Grenoble that became the highest 
flux reactor for studying condensed matter physics and chemistry: 
The Institute Laue-Langevin.

Bertaut became the leader of the Grenoble School on magnetic 
structure determination. 
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Magnetic Structure Description and Determination

Symmetry Analysis in Neutron Diffraction Studies of Magnetic 
Structures,  JMMM 1979-1980

Yurii Alexandrovich Izyumov (1933-2010) 
and collaborators, mainly V.E. Naish and 
R.P. Ozerov.

They published a series of 5 articles in 
Journal of Magnetism and Magnetic 
Materials on representation analysis and 
magnetic structure description and 
determination, giving explicit and general 
formulae for deducing the basis functions 
of irreps.



Summary of Group representation theory
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A representation of a group is a set of matrices satisfying the same 
operation rules as the group elements

Under the ordinary matrix product the given set constitutes an 
isomorphic group (preserves the multiplication table).

A similarity transformation applied to all matrices provides an equivalent 
representation (the matrix U is generally unitary: U-1=U†).

A particular group has an infinite number of representations of 
arbitrary dimensions. The most important representations are called 
“Irreducible Representations” (Irreps). An arbitrary representation may 
be reduced to “block-diagonal form” by an appropriate similarity 
transformation. Those representations that cannot be reduced are the 

Irreps.

  1 2 1 2( ) | , ( ) ( ) ( )g g G g g g g       

 1( ) ( )g U g U with g G   



Summary of Group representation theory
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 1 1( ) ( )g U g U with g G U U        

Irreducible representations

Γ1 ={A(e), A(a), A(b),…}

Γ2 = {B(e), B(a), B(b),…}

Γ3 = {C(e), C(a), C(b),…}

Given the representation Γ={Γ(e), Γ(a), Γ(b)…} of the group G={e, a, 

b,…}, if we are able to find a similarity transformation U converting 

all matrices to the same block-diagonal form, we obtain an equivalent 

representation that can be decomposed as follows:

1 2

1 2 ... m

mn n n n




        

11 12

21 22

11

11

11 12 13

21 22 23

31 32 33

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

( ) 0 0 0 0 0 0 ( ) 2 ( ) ( )

0 0 0 0

0 0 0 0

0 0 0 0

A A

A A

B

g B A g B g C g

C C C

C C C

C C C

 
 
 
 
 

     
 
 
 
 
 

In general: 



Master formulae of group representation theory
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* ( )
( ) ( )ij lm il jm

g G

n G
g g

l

 





  


  

We shall note the different irreducible representations with the 

index  and a symbol  that may be used also for matrices. The 

dimension of the representation  is l. The characters of a 

representation (traces of the matrices) will be represented as (g)

The great orthogonality theorem:

*( ) ( ) ( )
g G

g g n G 

  



Particularized for the characters:

*1
, ( ) ( )

( ) g G

n n g g
n G



  


 
 

    

Decomposition of a representation in Irreps:



Basis functions of a representation
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1( ) ( ) ( ) '( )r r rO g g   

The elements of the symmetry groups act on position vectors. For 

each particular problem we can select a set of physically relevant 

variables i {i =1, 2, …p} spanning a working functional space W. 

These functions constitute a basis of the W space.

When using the functions i (r), the action of the operator O(g) gives 

rise to a linear combination, defining a representation of the group G: 

The action of the operator associated to a symmetry operator when 

applied to a function of position vectors is defined by the expression:

( ) ( ) '( ) ( ) ( )r r rj ij i

i

O g g    



Basis functions of irreducible representations
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If we take another basis  related to the initial one by a unitary 

transformation we may get the matrices of the  representation in 

block-diagonal form.

1

( ) ( ) ( ) ( )r r
l

j ij i

i

O g g


 


 

( ) ( ) ( )r rj ij i

i

U g 

The system of p -functions splits in subsystems defining irreducible 

subspaces of the working space W. If we take one of these subspaces 

(labelled ), the action of the operator O(g) on the basis functions is:

Here the functions are restricted to those of the subspace 



Basis functions of Irreps: Projection operators

48

Projection operators

There is a way for obtaining the basis functions of the Irreps for the 

particular physical problem by applying the following projection 

operator formula:

The result of the above operation is zero or a basis function of 

the corresponding Irrep. The index [j] is fixed, taking different 

values provide new basis functions or zero.

*

[ ]

1
( ) ( ) ( 1,... )

( )
i i j

g G

P g O g i l
n G

  

  


   



Representations of the translation group (1)
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Representations of the translation group
The translation group is Abelian so the Irreps are all one-dimensional.

Considering the properties of the translation operators and the Born-Von Karman 

periodic boundary conditions the representation matrix (a single number equal to its 

character) is given by the expression:

31 2

1 1 2 2 3 3 1 2 3

1

3 31 1 2 2

1 2 3

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) exp 2 , 0 1

t a a a a a a

a a

t

j

ll l

N

j j

i i

O O l l l O O O

O O

p lp l p l
O i p Z N

N N N




   



   
        

   

There are representations labelled by the reciprocal space 

vector:
1 2 3N N N N  

3 31 2 1 2
1 2 3

1 2 3 1 2 3

, ,k b b b
p pp p p p

N N N N N N

 
    
 



Representations of the translation group (2)
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The matrix of the representation k corresponding to the translation t is then:

 3 31 1 2 2

1 2 3

( ) exp 2 exp 2k
t k t

p lp l p l
i i

N N N
 

   
      

   

 ( ) ( ) ( ) ( ) exp 2 ( )k k k k
t r t r k t rO i     

The basis functions of the group of translations must satisfy the equation:

( ) ( )exp{ 2 }, ( ) ( )k

k k kr r kr r t ru i with u u    

The most general form for the functions              are the Bloch functions:( )k
r

( ) ( ) ( ) ( )exp{ 2 ( }

exp{2 } ( )exp{ 2 } exp{2 } ( )

k k

k

k

k

t r r t r t k r t)

kt r k r kt r

O u i

i u i i

  

   

      

  

This is easily verified by applying the rules or the action of operators on 

functions 

Where the k vectors in reciprocal space are restricted to the first Brillouin Zone.

It is clear that adding a reciprocal lattice vector H to k, does not change the matrix, 

so the vectors k’=H+k and k are equivalent.
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k-vectors: Brillouin zones



k-vectors: Brillouin zones
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For constructing the representations of the space groups it is important to start with 

the basis functions. Let us see how the Bloch functions behave under the action of a 

general element of the space group g={h|th}

( ) ( ) { | } ( ) '( )k k
r t r rhO g h   

1

1 1

( ) '( ) {1| } '( ) {1| }{ | } ( ) { | }{1| } ( )

{ | }exp{2 } ( ) exp{2 }{ | } ( )

exp{2 } '( )

k k

k k

t r t r t t r t t r

                t k t r k t t r

                k t r

h h

h h

O h h h

h i h i h h

i h

   

   

 



 

   

  



To determine the form of the functions          one can see that they should also 

be Bloch functions with a different k-label

'( )r

( ) ( ) { | } ( ) ( )k k k
r t r r

h

hO g h   So that:

The Bloch functions also serve as basis functions but the representations are no 

longer one-dimensional because the Bloch functions whose wave vectors are 

related by the rotational part of gG belong to a same subspace.

Representations of space groups: basis functions
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The star of the vector k: little group

The set of non-equivalent k vectors obtained by applying the rotational part of the 

symmetry operators of the space group constitute the so called “star of k”

1 1 1 2 1 3 1 1 2{ } { , , , ,...} { , ,... }k k k k k k k k
kl

h h h 

The ki vectors are called the arms of the star. The number lk is less or equal to 

the order of the point group n(G0) 

The set of elements gG leaving the k vector invariant, or equal to an equivalent 

vector, form the group Gk. Called the group of the wave vector (or propagation 

vector group) or the “little group”. It is always a subgroup of G. The whole 

space/point group (little co-group) can be decomposed in cosets of the propagation 

vector group:

2

1

0 0 2 0 0

1

...

...

k k k

k k k

G G G G k k

G G G G k k

k

k

l

L L L

L

l

L L L

L

g g g

h h h





    

    




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The representations of Gk and G

We need to know the Irreps of Gk 
k only for the coset representatives (with respect 

to the translation group) of Gk

2

( ) ({ | }) ({1| }{ | }) ({1| }) ({ | })

({ | }) ({ | })

k k k k k

k k t k

t t t t t t

t t  t

h h h

i

h h

g h h h

h e h

    

  

        

   

2 31kG Τ Τ Τ Τng g g   

For a general element of Gk we have:

The matrices k can be easily calculated from the projective (or loaded) 

representations that are tabulated in the Kovalev book

2
( ) ({ | }) ( )

k tk k
t  hi

h projg h h e
      

Alternatively they can be calculated using special algorithms (Zak’s method)
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The representations of Gk and G

Let us note the irreducible representations of Gk as  k of dimensionality l . 

The basis functions should be of the form: i
k (r)=uki

 (r) exp(-2ikr)  (i=1,… l)

Under the action of the elements of Gk the functions transform into each other with 

the same k-vector. 

Using the elements of G not belonging to Gk one generates other sets of basis 

functions: i
k

1
 (r); i

k
2
 (r); … i

k
lk
 (r) that constitute the basis functions of the 

representations of the total space group.

These representations are labelled by the star of the k vector as: {k} and are of 

dimensionality l lk . Each irreducible “small representation” induces an irreducible 

representation of the total space group. The induction formula is:

1

{ } 1

, ( ) ( )
k

k k

GL M
Li Mj ij L M g g g

g g g g   




  

The last symbol is 1 if the 

subscript condition is true, 

otherwise is zero



Outline:

1. Magnetic Structures and neutron scattering
2. Representation Analysis and Magnetic 

Structures
3. Magnetic Structure Determination. Magnetic 

Structure Factors
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Magnetic Bragg Scattering

*

hhhhh MM   *NNI

hM e M(h) e M(h) e (e M(h))      

k Hh   Scattering vector

Intensity (non-polarised neutrons)

Magnetic interaction vector

h
e

h




Magnetic structure factor:

Magnetic structure factor: Shubnikov groups
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*
M MI  

1

( ) ( )exp(2 · )M H m H r
magN

m m m

m

p f H i


 

M e M e M e (e M)      

 
1

( ) det( ) {2 [( { } ]}M H m H t r
n

j j j s s s j s j

j s

p O f H T h h exp i h


    

n independent magnetic sites labelled with the index j

The index s labels the representative symmetry operators of the 

Shubnikov group:                                       is the magnetic moment 

of the atom sited at the sublattice s of site j.
det( )m mjs s s s jh h 

The use of Shubnikov groups implies the use of the 

magnetic unit cell for indexing the Bragg reflections

The maximum number of parameters np is, in general, equal to 

3n magnetic moment components. Special positions make np< 3n.
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Magnetic Structure Factor: k-vectors

1

( ) ( ) {2 [( ){ } ]}
k

M h h S H k t r
n

j j j js s j

j s

p O f T exp i S


  

j :  index running for all magnetic atom sites in the magnetic 

asymmetric unit (j =1,…n )

s :  index running for all atoms of the orbit corresponding to 

the magnetic site j (s=1,… pj). Total number of atoms: N = Σ pj

{ }t sS Symmetry operators of the propagation vector 

group or a subgroup

If no symmetry constraints are applied to Sk, the maximum number of 

parameters for a general incommensurate structure is 6N (In practice 

6N-1, because a global phase factor is irrelevant)
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Group Theory and representation analysis

According to the Landau theory of phase transitions, it is 
expected that the configuration of the magnetic moments can 
be described in terms of the basis functions of the Irreps of 
the propagation vector group Gk. The Irreps of Gk are tabulated 
or can be calculated independently of the problem

,

,

... ( )n

jl im jl im

jl im

H J S S O S

 
 

 

But, knowing the classical Hamiltonian of the spin system, 
the ground state (magnetic structure at T= 0 K) should 
minimize the energy

The symmetry of the Hamiltonian may be higher than 
the space group symmetry (e.g. isotropic exchange 
interactions)
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Group Theory and representation analysis

A reducible representation of the propagation vector group can be 
constructed by selecting the atoms of a Wyckoff position and 
applying the symmetry operators to both positions and axial vectors.
This gives rise to the so called Magnetic Representation of 
dimension: 3na (being na the number of atoms in the primitive cell) 

Mag Perm Axial n 




     

This representation can be decomposed in Irreps and the number 
of times a particular Irreps,       , is included can be easily 
calculated 



The basis functions, for each Irrep and each sublattice of a Wyckoff 
site, can be calculated by using the projection operator formula. The 
basis functions are constant vectors of the form (1,0,0), (0.5, 1,0) … 
with components referred to the crystallographic unitary frame: 
{a/a, b/b, c/c} attached to each sublattice.
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The working space for symmetry analysis of magnetic 

structures: magnetic representation 

One can generate a reducible representation of Gk by 

considering the complex working space spanned by all the 

components of Skjs. 

Each vector has three complex components. 

As the atoms belonging to different sites do not mix under 

symmetry operators, we can treat separately the different sites. 

The index j is then fixed and the index s varies from 1 to pj. 

Being pj the number of sublattices generated by the site j.

The working complex space for site j has dimension nj=3 pj is 

then spanned by unit vectors {kj
s}( = 1, 2, 3 or x, y, z and

s = 1… pj,) represented as column vectors (with a single index 

n) with zeroes everywhere except for n=+3(s-1). The nj

vectors refers to the zero-cell. 

,10

,10

, 10

,0

,1

,0

,0

,0

k
ε

j

ys

j

j

x

y

z s

x s

y s

z s

y p

z p

 
 
 
 
 

 
 
 
 

  
 
 
 
 
 
 
 
   

Case =y and s



64

The working space for symmetry analysis of magnetic 

structures: magnetic representation 

One can extend the basis vectors to the whole crystal by using the Bloch 

propagation then forming column vectors of nj  N dimensions:

exp( 2 )k k
ε kR

j j

s s l

l

i  


 

If one applies the symmetry operators of Gk to the vectors {kj
s}, 

taking into account that they are axial vectors, we obtain another vector 

(after correcting for the Bloch phase factor if the operator moves the 

atom outside the reference zero-cell) of the same basis. The matrices

kj
s,q(g) of dimension nj  nj = 3pj  3pj corresponding to the different 

operators constitute what is called the “Magnetic Representation” for 

the site j and propagation vector k.
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The magnetic representation 

The vectors {j
s} are formed by direct sums (juxtaposition) of normal 

3D vectors uj
s. Applying a symmetry operator to the vector position 

and the unit spin associated to the atom js along the -axis, changes 

the index js to jq and reorient the spin according to the nature of the 

operator g={h|th} for axial vectors.

,

; ( , )

( ) det( ) ( ) det( ) det( )

r r t r a a

u u

j j j j j

s s h q gs gs

j j

s n s n n n

n n

g h gs q

g h h h h h h      

    

   

2

, ,( ) ( ) det( )
kak k k k

ε ε ε
j
gsij j j j j

s q s q s gq q

q q

O g g e h h


     
 

   

2

, ,( ) det( )
kak

j
gsij j

Mag q s q gsg e h h


    

Matrices of the magnetic representation
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The magnetic representation as direct product of permutation 

and axial representations 

2

, ,( ) det( )
kak

j
gsij j

Mag q s q gsg e h h


    

An inspection to the explicit expression for the magnetic 

representation for the propagation vector k, the Wyckoff position j, 

with sublattices indexed by (s, q), shows that it may be considered 

as the direct product of the permutation representation, of dimension 

pj  pj and explicit matrices:

2

,( )
kak

j
gsij j

Perm qs q gsP g e


  

by the axial (or in general “vector”) representation, of dimension 3, 

constituted by the rotational part of the Gk operators multiplied by 

-1 when the operator g={h|th} corresponds to an improper rotation.

( ) det( )Axial V g h h   

Permutation 
representation

Axial representation

Magnetic 
representation
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Basis functions of the Irreps of Gk

The magnetic representation, hereafter called M irrespective of the 

indices, can be decomposed in irreducible representations of Gk. 

We can calculate a priori the number of possible basis functions of 

the Irreps of Gk describing the possible magnetic structures. 

This number is equal to the number of times the representation  is 

contained in M times the dimension of . The projection 

operators provide the explicit expression of the basis vectors of the 

Irreps of Gk

*

[ ]

*

[ ] ,

1
( ) ( ) ( ) ( 1,... )

( )

1
( ) ( ) exp(2 )det( )

( )

0k

0k

k k

G0k

k k

G0k

ε
G

k a ε
G

j

s

g

j j j

gs s gq q

g q

j g O g l
n

j g i h h
n

 

    

 

    




 





  

 



 




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Basis functions of the Irreps of Gk

It is convenient to use, instead of the basis vectors for the whole set 

of magnetic atoms in the primitive cell, the so called atomic 

components of the basis vectors, which are normal 3D constant 

vectors attached to individual atoms:

, 1,...

( ) ( )k k
S

js p

j js 

 
 

 

The explicit expression for the atomic components of the basis 

functions is:

1

2*

[ ] , [ ] 2

3

( ) ( ) e det( )
0k

k ak

G

S
j
gsi j

s g q

g

h

js g h h

h


 

   






 
 

   
 
 


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Fundamental hypothesis of Symmetry Analysis

( )k

k
S Sjs n n

n

C js 

 




The fundamental hypothesis of the Symmetry Analysis of magnetic 

structures is that the Fourier coefficients of a magnetic structure are 

linear combinations of the basis functions of the irreducible 

representation of the propagation vector group Gk

1

( ) ( ) ( ) {2 }k
M h h S h r

n

j j j n n s j

j n s

p O f T C js exp i 

 






   
Magnetic structure factor in terms of basis vectors of irreducible 

representations and refinable coefficients Ci
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Fourier coefficients and basis functions of the irreps

( )k

k
S Sjs n n

n

C js 

 




The coefficients           are the free parameters of the 

magnetic structure. Called “mixing coefficients” by Izyumov
nC


Indices:

k : reference to the propagation vector

 : reference to the irreducible representation

n : index running from 1 up to n

 : index running from 1 up to
Mag n 




  



dim( )

Fourier coeff. Basis vectors

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Going beyond Gk: more symmetric magnetic structures using 

the representations of the whole space Group

Up to now we have considered only the Irreps of the little group. 

In some cases we can add more constraints considering the 

representations of the whole space group. This is a way of 

connecting split orbits (j and j’) due, for instance to the fact that 

the operator transforming k into –k is lost in Gk.

2

1 1

2 3 1 2 3

... { | }

: { } { , , , ... } { , , , ... }

k k k k kG G G G G t G k k

  k  k = k  k  k   k = k  k  k   k

k k

k L

k k

l l

l L L h L L

L L

l l

g g g h h

Star of h h h

 

      

The little groups GkL are conjugate groups to Gk

1 '

1( ) ( ) ( ) ( 1,... )

k k

k kk k

G G r r t r a

Γ Γ Ψ Ψ

L L L

L L

j j j j

L L L s L s h q g s

L L L

g g g h

g g gg O g l  

  





    

  
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2

' e det( )
k a

k kS S
j

L g s
L

L

i

j q L L jsR R




Applying the formulae we have for applying the operators to 

the basis vectors we obtain for the atomic components the 

following relations: 

'

2

( ' ) e det( ) ( ) ( )
k a

k k

r r t r a

S = S

L L

j
L g s

L L

j j j j

L s L s h q g s

i

L

g h

j q R R h js


 

 

   

If we consider that our magnetic structure can be described by a 

representation of the whole space group the Fourier coefficients 

of atoms that are not connected by a symmetry operator of Gk

are related by:

( )k

k
S Sjs n n

n

C js 

 




Going beyond Gk: more symmetric magnetic structures using 

the representations of the whole space Group
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The maximum number of free coefficients to describe the magnetic 

structure is proportional to the number m of independent basis vectors

if we consider real coefficients when k = ½ H

nf = m  dim()

if we consider complex coefficients when k  IBZ

nf  = 2m  dim() -1 

The analysis is successful when one of the following conditions apply: 

nf = 2m  dim() –1 < 6pj (for k non equivalent to -k)

nf = m  dim() < 3pj (for k equivalent to -k)

Where pj is the number of sublattices (atoms) of site j. The effective number of 

free parameters is lower in general as soon as one uses the relation between basis 

vectors of different arms of the star {k} or select special direction in representation 

space for dim() > 1.

Usefulness of the Symmetry Analysis
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Different ways of treating 

magnetic structures in 

FullProf
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Different ways of treating magnetic structures in FullProf

 js n n

n

C js 

 


 k

k
S S

(1) Standard Fourier (all kind of structures) coefficients refinement with Sk

described with components along {a/a, b/b, c/c} (Jbt = 1,10), or in 

spherical coordinates with respect to a Cartesian frame attached to the unit cell 
(Jbt = -1, -10).

(2) Time reversal operators, presently only for k=(0,0,0) (Jbt = 10 + 

Magnetic symmetry keyword after the symbol of the SPG)

(3) Shubnikov Groups in BNS formulation (Jbt = 10 + Isy=2). Whatever 

magnetic space group in any setting. The PCR file may be generated from a 

mCIF file.

(4) Real space description of uni-axial conical structures (Jbt = 5)

(5) Real space description of multi-axial helical structures with elliptic  envelope 
(Jbt = -1, -10 + (More=1 & Hel = 2))

(6) Refinement of        coefficients in the expression:
Jbt = 1 and Isy=-2

nC


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Magnetic structures in FullProf
(1) Standard Fourier coefficients (Jbt = +/-1, +/-10)

The Fourier component k of the magnetic moment of atom j1, that 

transforms to the atom js when the symmetry operator gs={S|t}s of Gk

is applied (rj
s=gsr

j
1=Ssr

j
1+ts), is transformed as:

1 { 2 }k k kS Sjs js j jsM exp i  

The matrices Mjs and phases kjs can be deduced from the relations 

between the Fourier coefficients and atomic basis functions. The 

matrices Mjs correspond, in the case of commensurate magnetic 

structures, to the rotational parts of the magnetic Shubnikov group 

acting on magnetic moments.

 
1

( ) {2 [( ){ } ]}
k k

M h h S H k t r
n

j j j js s j j

j s

p O f T exp i S


   
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Magnetic structures in FullProf
(1) Standard Fourier coefficientsHo2BaNiO5

!Nat Dis Mom Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More

2   0   0 0.0 0.0 1.0   1  -1  -1   0   0          0.000   1   5   0

I -1                     <-- Space group symbol for hkl generation

!Nsym Cen Laue MagMat

4   1   1   1

!

SYMM  x,y,z

MSYM  u,v,w, 0.0

SYMM  -x,y,-z

MSYM  u,v,w, 0.0

SYMM  -x,-y,-z

MSYM  u,v,w, 0.0

SYMM   x,-y, z

MSYM  u,v,w, 0.0

!

!Atom Typ  Mag Vek    X      Y      Z       Biso   Occ      Rx      Ry      Rz

!     Ix     Iy     Iz    beta11  beta22  beta33   MagPh

Ho   JHO3  1  0  0.50000 0.00000 0.20245 0.00000 0.50000   0.131   0.000   8.995

0.00    0.00   81.00    0.00    0.00  191.00    0.00  181.00

. . . . . . . . . . . . .

!     a          b         c        alpha      beta       gamma

3.756032   5.734157  11.277159  90.000000  89.925171  90.000000

. . . . . . . . . . . . .

! Propagation vectors:

0.5000000   0.0000000   0.5000000          Propagation Vector  1

0.000000    0.000000    0.000000 

The symbol of the space group 
is used for the generation of 
the parent reflections. In this 
case half reciprocal lattice is 
generated



Magnetic structure factor:

Magnetic structure factor: Shubnikov groups
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*
M MI  M e M e M e (e M)      

 
1

( ) det( ) {2 [( { } ]}M H m H t r
n

j j j s s s j s j

j s

p O f H T h h exp i h


    

n independent magnetic sites labelled with the index j

The index s labels the representative symmetry operators of the 

Shubnikov group:                                       is the magnetic moment 

of the atom sited at the sublattice s of site j.
det( )m mjs s s s jh h 

The use of Shubnikov groups implies the use of the 

magnetic unit cell for indexing the Bragg reflections, the 

concept of propagation vector is absent in this approach
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Magnetic structures in FullProf

(2) Time reversal operators, presently only for k=(0,0,0) (Jbt = 10

+

Magnetic symmetry keyword after the symbol of the space group)

Name:CuCr2O4

!

!Nat Dis Ang Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More

3   0   0 0.0 0.0 1.0  10   0   0   1   0        611.770   0   7   0

!

F d d d Magnetic symmetry below

! Time Reversal Operations on Crystal Space Group

1 -1  1 -1  1

!Atom   Typ Mag Vek X         Y         Z       Biso Occ N_type

Spc/

!       Rx       Ry        Rz Ix        Iy Iz MagPh / Line 

below:Codes

!      beta11   beta22   beta33   beta12   beta13   beta23  / Line below:Codes

Cu     MCU2      1  0    0.12500   0.12500   0.12500   0.04112   0.12500    1    0

0.00      0.00      0.00    141.00      0.00

0.00000  -0.74340   0.00000   0.00000   0.00000   0.00000   0.00000 <-MagPar

0.00    191.00      0.00      0.00      0.00      0.00      0.00

. . . . . 
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Magnetic structures in FullProf
(3) Shubnikov Groups in BNS formulation (Jbt = 10 + Isy=2).

!Nat Dis Ang Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More

18   0   0 0.0 0.0 1.0  10 0   2 0   0       1992.773   0 7   0

!

C_ac number:"9.41"     <--Magnetic Space group symbol (BNS symbol & number)

! Nsym Cen  N_Clat N_Ant

2     0     1     2

! Centring vectors

0.00000   0.50000   0.50000

! Anti-Centring vectors

0.00000   0.00000   0.50000

0.00000   0.50000   0.00000

! Symmetry operators

1 x,y,z,+1

2 x+1/2,-y+1/4,z,+1

!

!Atom   Typ Mag Vek X         Y         Z       Biso Occ N_type!       

Rx       Ry        Rz Ix        Iy Iz MagPh

!      beta11   beta22   beta33   beta12   beta13   beta23

Dy_1   JDY3      1  0    0.62500  -0.04238   0.12500  0.44667   1.00000    1    0  #

0.00      0.00      0.00     0.00      0.00

5.10000   2.00000   1.00000 0.00000   0.00000  0.00000   0.00000 <-MagPar

0.00      0.00     0.00      0.00

Fe_1   MFE2      1  0    0.62500   0.86347  -0.00391  0.74386   1.00000    1    0  #

0.00      0.00      0.00     0.00      0.00

1.00000   3.00000   1.00000 0.00000   0.00000  0.00000   0.00000 <-MagPar

0.00      0.00     0.00      0.00
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Magnetic structures in FullProf
(5) Real space description of multi-axial helical structures with 

elliptic  envelope (Jbt = -1,-10 + More=1 & Hel = 2)

Same as (1), but the Fourier component k of the magnetic moment of 

atom j1, is explicitly represented as:

1

1
[ ] ( 2 )

2
j uj j vj j jm im exp i   k kS u v

With uj, vj orthogonal unit vectors forming with wj = uj x vj a direct 

Cartesian frame.

Refineable parameters:  muj, mvj, kj

plus the Euler angles of the Cartesian frame {u, v, w}j
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Magnetic structures in FullProf

Jbt=-1

!

!Nat Dis Mom Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More

3   0   0 0.0 0.0 1.0  -1 4  -1 0   0          0.000  -1 0   1

!

!Jvi Jdi Hel Sol Mom Ter Brind RMua RMub RMuc Jtyp Nsp_Ref Ph_Shift

3   0   2 0   0   0  1.0000  1.0000  0.0000  0.0000    1      0      0

!

P -1                     <--Space group symbol

!Nsym Cen Laue MagMat

4   1   1   1

!

SYMM   x, y, z

MSYM   u, v, w, 0.00

.....

!Atom Typ Mag Vek X      Y      Z       Biso Occ Mr       Mi Chi

!   Phi    Theta  unused  beta11  beta22  beta33   MagPh

Fe   MFE3  1  0  0.12340 0.02210 0.25000 0.00000 0.50000   3.450   3.450   0.000

0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00

15.000  25.000   0.000   0.000   0.000   0.000 0.00000

0.00     .00    0.00    0.00    0.00    0.00    0.00

.....

(5) Real space description of multi-axial helical structures with elliptic  

envelope (Jbt = -1,-10 + More=1 & Hel = 2)
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Magnetic structures in FullProf

Jbt=-10

....

!Nat Dis Ang Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More

3   0   0 0.0 0.0 1.0 -10   4  -1   0   0        492.121  -1   0   1

!

!Jvi Jdi Hel Sol Mom Ter Brind RMua RMub RMuc Jtyp Nsp_Ref Ph_Shift

3  -1   2   0   0   0  1.0000  1.0000  0.0000  0.0000    1      0      0

!

P -1                     <--Space group symbol

!Nsym Cen Laue MagMat

4   1   1   1

!

SYMM   x, y, z

MSYM   u, v, w, 0.00

...

!Atom Typ Mag Vek X         Y         Z       Biso Occ N_type

!     Mr       Mi Chi        Phi      Theta   unused      MagPh

!    beta11   beta22   beta33   beta12   beta13   beta23  / Line below:Codes

Fe   MFE3      1  0    0.12340   0.02210   0.25000   0.00000   0.50000    1    0

0.00      0.00      0.00      0.00      0.00

4.46000   4.46000   0.00000  10.00000  25.00169   0.00000   0.12110 <-MagPar

0.00      0.00      0.00      0.00       .00      0.00      0.00

....

(5) Real space description of multi-axial helical structures with elliptic  

envelope (Jbt = -1,-10 + More=1 & Hel = 2)



Magnetic structures in FullProf

(6) Coefficients of basis functions refinement:

A magnetic phase has Jbt = 1 and Isy=-2

The basis functions of the Irreps (in 

numerical form) are introduced 

together with explicit symmetry 

operators of the crystal structure.

The refined variables are directly the 

coefficients  C1, C2, C3, ….

          
 







 
n

jjsn

s

n

n

j

jjj iexpjsCTfOp k

k
rhShhM 2

1

 k

k
S Sjs n n

n

C js 

 




nC





Magnetic structures in FullProf
(6) Coefficients of basis functions refinement:

Ho2BaNiO5    (Irep 3 from BasIreps)

!Nat Dis Mom Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More

2   0   0 0.0 0.0 1.0   1  -1  -2   0   0          0.000   1   5   0

I -1                     <--Space group symbol for hkl generation

! Nsym   Cen  Laue Ireps N_Bas

2     1     1    -1     2

! Real(0)-Imaginary(1) indicator for Ci

0  0

!

SYMM x,y,z

BASR   1  0  0    0  0  1

BASI   0  0  0    0  0  0

SYMM  -x,y,-z

BASR   1  0  0    0  0  1

BASI   0  0  0    0  0  0

!

!Atom Typ  Mag Vek    X      Y      Z       Biso   Occ      C1      C2      C3

!     C4     C5     C6      C7      C8      C9     MagPh

Ho   JHO3  1  0  0.50000 0.00000 0.20250 0.00000 1.00000   0.127   8.993   0.000

0.00    0.00   81.00    0.00    0.00   71.00  181.00    0.00

. . . . . . . . . . . . . . . . 

!     a          b         c        alpha      beta       gamma      

3.754163   5.729964  11.269387  90.000000  90.000000  90.000000   

. . . . . . . . . . . . . . . . . .

! Propagation vectors:

0.5000000   0.0000000   0.5000000          Propagation Vector  1
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Programs for symmetry analysis

The irreducible representations of space groups can be 
obtained consulting tables or using computer programs for 
calculating them.

The basis functions of the irreducible representations 
depend on the particular problem to be treated and they 
have to be calculated by using projection operator formula. 
A series of programs allow these kind of calculations to be 
done. Doing that by hand may be quite tedious and prone to 
errors.

Concerning magnetic structures three programs are of 
current use: BasIreps (J. Rodríguez-Carvajal), SARAh
(Andrew Wills) and MODY (Wiesława Sikora). One can use 
also BCS (Perez-Mato et al.) or ISODISTORT (B.Campbell
and H. Stokes)
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GUI for BasIreps

Code of files

Working 

directory

Title

SG symbol 

or 

generators

Brillouin 

Zone label 
k-vector

Axial/polar

Number of 

atoms Atoms 

positions

Atoms in 

Unit Cell
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Output of BasIreps

BasIreps provides the basis functions (normal modes) of 

the irreducible representations 

of the wave-vector group Gk

{ }

{ 2 }k

k

m S kRljs js lexp i 

( )k

k
S Sjs n n

n

C js 

 




Output of BasIreps  Basis Functions (constant vectors)

( )k
Sn js


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Output of BasIreps
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Output of BasIreps

k=(0,0,0), =1, n=1,2,3

=1, j=1, s=1,2,3,4

Format for FullProf

 jsn





k
S
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Steps for magnetic structure determination using powder diffraction

Symmetry Analysis 
BasIreps, MODY, 

SARAh, BCS, Isotropy

Propagation vector

 Space Group

Atom positions

Magnetic structure 
solution (Sim. Ann.) 

FullProf

Integrated intensities

 Atomic components of basis 

functions or Shubnikov group 

symmetry operators 

Propagation vector(s)
k_Search

Step

Peak positions of 

 magnetic reflections

Cell parameters

Input
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Magnetic Structure Refinement using powder diffraction

Magnetic structure 
Refinement 
FullProf

Complete structural 
 model should be

provided

Input

In many cases the number of free parameters is too 
much high to be refined by LSQ: try to reduce the 
number of parameters or make soft constraints.

Use spherical components of Fourier coefficients in 
order to have better control of the amplitude of the 
magnetic moment

Different runs of SAnn jobs may give you an idea of 
the degeneracy of solutions for your particular problem.



The End!
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