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1. Magnetic Structures and neutron scattering



$ebnetic dipoles

In terms of orbital angular momentum for an electron

o= — (ijL Dirac postulated in 1928 that
_2m, the electron should have an
(o Intrinsic angular momentum:
N, =— —]S the “spin”
M

J=L+S =791 om.
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FOR SCIENCE ®

Angular momenta are measured in units of 4 = Py
T

. eh
n=—-gu.J with U = Py Bohr Magneton

e

The gyromagnetic ratio is defined as the ratio of the
magnetic dipole moment to the total angular momentum

=—g| —| > - =yh
y=-9 om, Qls =7

So we have: = —gluBJ = }/hJ



fies"af the neutron
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According to quantum mechanics the classical angular
momentum 1is replaced by an operator o

n=yho
The neutrons have a spin-only angular momentum operator

with eigenvalues +7%:h. The components of the operator ¢ for
a spin-'4 particle are the Pauli spin matrices:

0 1 0 —i 1
2 \1 O 2 i 0 2 \0

)
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FOR SCIENCE ®

Gyromagnetic ratios of common spin-1/2 particles

Electron: 1.76x10° MHz/T
Proton: 267 MHz/T
Neutron: 183 MHz/T

The neutron moment Is around 960 times smaller that the
electron moment.

roton neutron
o proto eutro

Nuclear magnetons: g, =—— ,=2.793uy #4,=1.91314,

2mIO

For neutrons: p =—y w6 Withy =1.913
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Atoms/ions with unpaired electrons

Intra-atomic electron correlation
Hund’s rule: maximum S/J

o

m =-g; ugJ (rare earths)

Nic* m=- ds ug S (transition metals)



4

SR hagnétic structure?

FOR SCIENCE ®

Paramagnetic state:
Snapshot of magnetic moment configuration

. 8 e & u
+,oré§~o—»,o’
<Si>:O f\,f\o\‘o\
§ o m w ¢

E, =—J; S-S,
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Ordered state: Anti-ferromagnetic
Small fluctuations (spin waves) of the static configuration

o ss W OW W oW e
L N AN

(S,)#0 - \.\ \.\ -
Magnetic structure: N L) LN R LN

Quasi-static configuration of magnetic moments
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@ magnetic structures

Ferro Antiferro
-+P)— 4P w@— 2O

3—_&;—#——:#——1# -C\)I:;Hﬂ-o—
Very often magnetic structures are complex due to :
- competing exchange interactions (i.e. RKKY)

- geometrical frustration

- competition between exchange and single ion anisotropy

oooooooooo 11
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Amplitude-modulated or Spin-Density Waves

—©= @  -— @ © —©=

—O= © +p— @ © 0 © -+———©

“Longitudinal”
—O @ -— O P O ——— @
e
o= © “0— - © —©= © -— €
c © ¢
C © ¢
"Transverse"” © © ¢
o)
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DT magnetic structures i

Conical

The (magnetic) structure of
crystalline solids possess always a
series of geometrical
transformations that leave invariant
the atomic (spin) arrangement.

These transformations constitute a
symmetry group in the mathematical
sense: point groups, space groups,
Shubnikov groups, superspace
groups, ..

The Shubnikov groups describe
commensurate magnetic structures

14
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The position of atom j in

unit-cell I is given by: ®
®

where R, Is a pure lattice
translation

15
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Whatever kind of magnetic structure in a crystal
can be described mathematically by using a Fourier
series

' x/ﬁ, m, :{Zk}:Skj exp{—27ikR, }
e A Re ¢ o
1 %

R,=R,+r;=la+Lb+l.c+x,a+yb+z:c

Necessary condition for real my;

S,y = Skj*

16
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A magnetic structure is fully described by:
i) Wave-vector(s) or propagation vector(s) {k}.

ii) Fourier components Sy for each magnetic atom j and
wave-vector K, S,; is a complex vector (6 components) lll

!

NAB
Fda' A

WYY

VAR

A
’

h J

)
e
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m,;, = {ZK}:SKJS exp{—27ikR }

| . index of a direct lattice point (origin of an arbitrary unit cell)
j: index for a Wyckoff site (orbit)
s: index of a sublattice of the j site

=S

Necessary condition for real moments my, = S_kjS

kjS
General expression of the Fourier coefficients (complex vectors) for
an arbitrary site (drop of js indices ) when k and —k are not equivalent:

Z%(Rk +il, ) exp{—27ig}

Only six parameters are independent. The writing above is convenient
when relations between the vectors R and | are established (e.g. when
IR|=|1], or R.1=0)

18



Persttonvettor: k=000) Gk

FOR SCIENCE ®

w###
a

The propagation vector k=(0,0,0) is at the centre of the Brillouin Zone.
m, = > S, exp{-27ikR, }=S,
ity

 The magnetic structure may be described within the
crystallographic unit cell
* Magnetic symmetry: conventional crystallography plus

spin reversal operator: crystallographic magnetic groups
19
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The propagation vector iIs a special
point of the Brillouin Zone surface

e — -t o— and_ k=Y H, where H is a reciprocal
lattice vector.

m, = {Z}:Skj exp{—27ik R} =S, exp{-ziHR,}
k

m; =Sy ('1)n(l)

REAL Fourier coefficients = magnetic moments

The magnetic symmetry may also be described using
crystallographic magnetic space groups

20
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- k interior of the Brillouin zone (IBZ) g
(pair k, -k) =t
- Real S, or imaginary component in the T
same direction as the real one .
m, =S, exp(—27ikR,)+S  exp(27zikR)) T T T T
—o———0r  —O»  —0>
1 :
Sy =§mjujexp(—27z|@j) e o o o
m,; =mu; cos27(kR, +¢;)

21
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- k interior of the Brillouin zone
- Real component of S, perpendicular to the
iImaginary component

1 . .
Sy = E[m“juj +1m, v, lexp(—27ig,;)
m,; =m,u; cos27z(kR, +¢,)+m,Vv,sin2z(kR, +¢,;)

22
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m, = > S, exp{—27ikR,}
tk}

The k vectors are
referred to the reciprocal

—f—>—0->—0->—0-> basis of the conventional

——— | - — | < o— direct cell and for centred
-Ol cells may have values > 1/2
° k=(1,0,0) or (0,1,0) ?

R,=R,+r;=la+Lb+l.c+x,a+yb+z:c

The translation vectors have fractional components

when using centred cells. The index j runs on the
atoms contained in a PRIMITIVE cell

23
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m,, = > S, exp{—27ikR,}
<

The program FullProf Studio performs the above sum and
represents graphically the magnetic structure.

This program can help to learn about this formalism because
the user can write manually the Fourier coefficients and see
what is the corresponding magnetic structure immediately.

Web site: http://www.ill.eu/sites/fullprof

24
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neutron scattering
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Differential neutron cross-section:

2 . 2
d’o _X ( il ) (k's'A'|V, \ksl‘ S(E,-E, +ho)
dQdE' ) k\27h?

This expression describes all processes in which:

- The state of the scatterer changes from Ato A’

- The wave vector of the neutron changes from k to k’ where kK’
lies within the solid angle dQ

- The spin state of the neutron changes fromsto s’

V., = W1,.B Is the potential felt by the neutron due to the magnetic
field created by moving electrons. It has an orbital an spin part.

26
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Magnetic vector potential
of a dipolar field due to
electron spin moment

Biot-Savart law for a
single electron with
linear momentum p

27
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SO@RHET ing: magnetic fields  hb

Evaluating the spatial part of the transition matrix element for
electron j:

<k-\vn:\k>ocexp<iQRj>{@x<s,.x@%(p,.x@)}

Where 7Q =7%(k—k") Is the momentum transfer

Summing for all unpaired electrons we obtain:

Y (k'[V,} K)o Qx (M(Q)x Q) = M(Q) -(M(Q)Q).Q=M, (Q)

J

M (Q) is the perpendicular component of the Fourier
transform of the magnetisation in the scattering object to the
scattering vector. It includes the orbital and spin contributions.

28
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M (Q) is the perpendicular component of the Fourier transform
of the magnetisation in the sample to the scattering vector.
Magnetic structure factor

M(Q) =j|v|(r)exp(iQ-r)d3r

Magnetic interaction vector
M, =exMxe=M-e(e-M)

Elastic scattering:

do .
(d_Q) =(y1,)’M M,

Neutrons only see the components of the magnetisation that
are perpendicular to the scattering vector

29
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e ft)llectlon Qf magnetic ato%

We will consider in the following only elastic scattering.
We suppose the magnetic matter made of atoms with unpaired

electrons that remain close to the nuclel.

Vector position of electrone: R, =R, +r

The Fourier transform of the magnetization can be written in
discrete form as

M(Q) = Zs exp(iQR,) = Zexp(lQ R.,)Zexp(lQ re)s;e
F Q)= 2s, op(iQ r,e> [p;(r) xp(IQE)'r
F Q) =m, | p,(r)exp(iQr)dr=m,f,(Q)
M(Q)=Zj)m.,- fy (Q)exp(iQRy)

30
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Fi(Q) =) s, exp(iQr,) = _f p,(r)exp(iQr)d’r
F(Q)= ijpj (r)exp(iQ-r)d’ri=m;, f,(Q)

If we use the common variable

s=sinB/A, then the expression of
the form factor Is the following:

f(s)= 2, W(i(s))

1=0,2,4,6

( Ji (S)) = TU “(r)j,(4zsr)dxridr

1.00

075 |

050

U3+ magnetic form factor

000 b
0.00 0.25 0.50 0.75

sSinB/A
(i1(5)) =5 (A exp{-a;s°}+B exp{-bs’}+C exp{-cs’}+D,)  for 1=2,4,6

< jo (S)> = Ao exp{_a052}+ Bo exp{—b032}+ Co eXp{_CoSZ}+ Do

31



§c-Seatfering by a crystal @@

The Fourier transform of the magnetization of atomic discrete
objects can be written in terms of atomic magnetic moments and

a form factor for taking into account the spread of the density
around the atoms

M(Q) = Zmlj f; (Q)exp(IQRy;)

For a crystal with a commensurate magnetic structure the content

of all unit cell is identical, so the expression above becomes
factorised as:

M(Q) =2 m; f;(Q)exp(iQr,) D exp(iQR,) o 3 m; f;(Q) exp(2ziHr))

The lattice sum is only different from zero when Q=2nH, where H is
a reciprocal lattice vector of the magnetic lattice. The vector M is then
proportional to the magnetic structure factor of the magnetic cell

32



Vi#getiC Scatfering by a crystal @

For a general magnetic structure that can be described as a

Fourier series: m, :Zskj exp{—27ikR,}
{k}

M(h) = ZZskj exp(—27ikR,) f, (h)exp(2zihR,)

M(h) = Z f,(h)exp(2zihr,)) S, D exp(2zi(h—k)R,)

M(h) oc Zskj f.(Q)exp(2zi(H+k) ;)

The lattice sum is only different from zero when h-k is a reciprocal
lattice vector H of the crystallographic lattice. The vector M is then
proportional to the magnetic structure factor of the unit cell that

now contains the Fourier coefficients S, instead of the magnetic
moments m;. -
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Portion of reciprocal space

® ® ® Magnetic reflections

“o

'Q Magnetic reflections: indexed

by a set of propagation vectors {k}

O Nuclear reflections

N IS the scattering vector indexing a magnetic reflection

- 1s a reciprocal vector of the crystallographic structure

K 1s one of the propagation vectors of the magnetic structure
( k i1s reduced to the Brillouin zone)

34
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Notice the decrease
of the paramagnetic
background on Ho3*

ordering

35
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From now the we will call M(h) the magnetic structure factor
M(h) =S, f,(Q)exp(2zi(H +k)-r,)
j

And its perpendicular component to h, M, (h), is the magnetic
Interaction vector of the crystallographic unit cell. The elastic
cross section (intensity of a Bragg reflection) is then:

do «
(d_Q) = (7ro)2 M, M,

Where M, (h) is calculated for a finite number of magnetic atoms
Inside the crystallographic unit cell. Notice that the magnetic
moments do not appear directly in the expression of M(h).

37
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2. Representation Analysis and Magnetic
Structures
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Group representations
(representation analysis)

39
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Bertaut is the principal developer of
the representation analysis applied
to magnetic structures

Representation analysis of magnetic
structures

E.F. Bertaut, Acta Cryst. (1968). A24,
217-231

40
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After the first experiments in magnetic neutron diffraction done at
Oak Ridge demonstrating the occurrence of antiferromagnetism,
Bertaut went to the USA in 1951/1953 and worked with Corliss
and Hasting at the Brookhaven National Laboratory. From 1958 to
1976 Bertaut was the head of the laboratory called “Diffraction
Neutronique” at the CENG in Grenoble.

After the first International Conference on Neutron Scattering
(Grenoble, 1963) Bertaut and Néel pushed the French authorities
to construct a nuclear reactor in Grenoble that became the highest
flux reactor for studying condensed matter physics and chemistry:
The Institute Laue-Langevin.

Bertaut became the leader of the Grenoble School on magnetic
structure determination.

41
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Yurii Alexandrovich lzyumov (1933-2010)
and collaborators, mainly V.E. Naish and
R.P. Ozerov.

They published a series of 5 articles in
Journal of Magnetism and Magnetic
Materials on representation analysis and

»

)“”:.

magnetic structure description and
determination, giving explicit and general
=i | formulae for deducing the basis functions
of irreps.

Symmetry Analysis in Neutron Diffraction Studies of Magnetic
Structures, JIMMM 1979-1980

42
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A representation of a group is a set of matrices satisfying the same
operation rules as the group elements

F={I'(9)1geG}, I(9,9,)=T(9)T(9,)

Under the ordinary matrix product the given set constitutes an
isomorphic group (preserves the multiplication table).

A similarity transformation applied to all matrices provides an equivalent
representation (the matrix U is generally unitary: U1=U").

I'(g)=U I'(g)U *{with g e G}

A particular group has an infinite nhumber of representations of
arbitrary dimensions. The most important representations are called
“Irreducible Representations” (Irreps). An arbitrary representation may
be reduced to "block-diagonal form"” by an appropriate similarity
transformation. Those representations that cannot be reduced are the

Irreps. 43
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Given the representation I'={I'(e), I'(a), I'(b)...} of the group G={e, a,
b,...}, if we are able to find a similarity transformation U converting
all matrices to the same block-diagonal form, we obtain an equivalent
representation that can be decomposed as follows:

I(g)=UT(g)U™ {withgeG} = TI'=UTU™

A, A, 0 0 O 0 0 . .
A, A, 0 0 0 0 0 Irreducible representations
0 08 0 0 0 o I ={Ae), A@), AD)....}
r@=/0 0 0 B, 0 0 0 |=A(g)®2B(g)®C(9) _
Tle oo vl o T?={B(), B) B),..}
0 0 0 0 C, C, C, [ ={C(e), C(a), C(b),...}
o o0 O o0 ¢C, C, C

In general: I'= Z nI=nl"@®nI?*.®&n "
Dv

44
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We shall note the different irreducible representations with the

Index v and a symbol I" that may be used also for matrices. The
dimension of the representation I', is |,. The characters of a

representation (traces of the matrices) will be represented as #(g)

The great orthogonality theorem:

Y TH(g)4(g) =

geG

”(G)5 5 65

im Y uy
V

Particularized for the characters:
> 2 @x“(9)=n(G)3s,,

geG
Decomposition of a representation In IrrepS'

r=>"nr,

45
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The elements of the symmetry groups act on position vectors. For
each particular problem we can select a set of physically relevant
variables ¢, {i =1, 2, ...p} spanning a working functional space W.
These functions constitute a basis of the W space.

The action of the operator associated to a symmetry operator when
applied to a function of position vectors Is defined by the expression:

O(9)e(r) =p(g 1) =¢'(r)

When using the functions ¢, (r), the action of the operator O(g) gives
rise to a linear combination, defining a representation of the group G:

0(9)¢;(1) = ¢'(r) = YTy (@) (1)

46
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If we take another basis y related to the initial one by a unitary
transformation we may get the matrices of the I" representation in
block-diagonal form.

Vi (r)= ZUij ()¢ (r)

The system of p y~functions splits in subsystems defining irreducible
subspaces of the working space W. If we take one of these subspaces
(labelled v), the action of the operator O(g) on the basis functions is:

0@y, (1) = 2T (@) (1)

Here the functions are restricted to those of the subspace v

47
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Projection operators
There Is a way for obtaining the basis functions of the Irreps for the

particular physical problem by applying the following projection
operator formula:

v _ pv 1 "y :
y, =P @zﬁéri[j](g) 0(9) ¢ (1=1..1)

The result of the above operation is zero or a basis function of
the corresponding Irrep. The index [j] Is fixed, taking different
values provide new basis functions or zero.

48
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Representations of the translation group

The translation group is Abelian so the Irreps are all one-dimensional.

Considering the properties of the translation operators and the Born-Von Karman
periodic boundary conditions the representation matrix (a single number equal to its

character) iIs given by the expression:

O(t) =0(l,a, +La, +l,a,) =0(a,)"0(a,)?O(a,)"
O(a;)""" =0(a;)

O(t) - exp- 27i Pl + P, + Pl , 0<p,eZ<N -1
Nl N2 N3

ThereareN = N1 X N2 X N3 representations labelled by the reciprocal space
vector:

K = pl, p2’|O3 :&bl+&b2+&b3
NN, N, )N, YN, 2N,

49



4

he t[anslatlon group (2) emos

FOR SCIENCE ®

The matrix of the representation k corresponding to the translation t is then:

r“(t) = exp{Zni( Pl + Pl + Pl j} =exp{2zikt}

Nl NZ N3

Where the k vectors in reciprocal space are restricted to the first Brillouin Zone.
It is clear that adding a reciprocal lattice vector H to k, does not change the matrix,
so the vectors k’=H+k and k are equivalent.

The basis functions of the group of translations must satisfy the equation:
Oty (r) =T ()™ (r) = exp {2zi Kt} (r)
The most general form for the functions ¥“(r) are the Bloch functions:
w"(r) =u, (r)exp{—2zikr}, withu, (r £t) =u,(r)
This is easily verified by applying the rules or the action of operators on
FUNCtions oty % (r) = y* (r —t) = u, (r —t) exp{-27i K (r —t)} =
= exp{27i kt}u, (r) exp{—2ik r} = exp{2i kthy“(r)

50
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The k-vector Types of Group 10 [P2/m]
Brillouin zone
( Diagram for arithmetic crystal class 2/mP )
P112/m (P2/m)-C2n" (10), P1121/m (P21/m)-C2n2 (11), P112/a (P2/c)-C2n? (13), P1124/a (P21/c)-C2n° (14)

Reciprocal-space group ( P112/m )*, No. 10

The table with the k vectors.

51
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FOR SCIENCE ®

The k-vector Types of Group 71 [Immm]
The k-vector Types of Group 71 [Immm]

. . Brillouin zone
Brillouin zone

( Diagram for arithmetic crystal class mmml )
( Diagram for arithmetic crystal class mmml )

25 28
c>b>a or ca>bh) Immm-D2r"" (71) to Imma-D2y"" (74
( b>a>c or b>c>a) Inmm-D2x2° (71) to Imma-D2n2® (74) ( ) ™ (4

. e ox «ox Reciprocal-space group ( Fmmm )*, No.69 : c<b<a orc<a<b
Reciprocal-space group ( Fmmm )*, No.69 : b <a <c orb <c <a
The table with the k vectars.

The table with the k vectors.

52
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For constructing the representations of the space groups it is important to start with
the basis functions. Let us see how the Bloch functions behave under the action of a
general element of the space group g={h|t, }

O(g)y" () ={hlt " (r) =y (r)

To determine the form of the functions  '(r)one can see that they should also
be Bloch functions with a different k-label

Ot)y '(r) ={L| S '(r) = }{h [t () ={h [t HL h 'y (r) =
={h|t, Yexp{2zik h ™t (r) = exp{2zik h ™t} |t " (r) =
— exp{27i hk thy ()

Sothat:  O(g)y"(r) ={h|t, " (r) =y™(r)

The Bloch functions also serve as basis functions but the representations are no
longer one-dimensional because the Bloch functions whose wave vectors are
related by the rotational part of geG belong to a same subspace.

53
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The set of non-equivalent k vectors obtained by applying the rotational part of the
symmetry operators of the space group constitute the so called “star of k”

{k}={k;, hky, hk;, hky, ..} ={k; K,,...K, }

The k; vectors are called the arms of the star. The number |, is less or equal to
the order of the point group n(G,)

The set of elements ge G leaving the k vector invariant, or equal to an equivalent
vector, form the group G,. Called the group of the wave vector (or propagation
vector group) or the “little group™. It is always a subgroup of G. The whole
space/point group (little co-group) can be decomposed in cosets of the propagation
vector group:

I
G=G,+9,G,+..=),0,G, k, =g,k
L=1

l
Gy =Gy +hGo +..=> h Gy k =hk
L=1

54
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We need to know the Irreps of G, T® only for the coset representatives (with respect
to the translation group) of G,

G, =1T+9,T+9,T+...+9,T

For a general element of G, we have:

r(g)=r"dhlt,+t) =@ tHh[t.}) =T {1|t}) T*"({h|t,})
Fkv ({h | th -I-t}) _ e27rikt Fkv ({h | th})

The matrices 'Y can be easily calculated from the projective (or loaded)
representations that are tabulated in the Kovalev book

I(9)=T* @It }) =T ()™

proj

Alternatively they can be calculated using special algorithms (Zak’s method)
55
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Let us note the irreducible representations of G, as T'x of dimensionality |, .
The basis functions should be of the form: y;*v (r)=u,;" (r) exp(-2=ikr) (i=1,... 1)

Under the action of the elements of G, the functions transform into each other with
the same k-vector.

Using the elements of G not belonging to G, one generates other sets of basis
functions: iKY (r); w2V (n); ... vk (r) that constitute the basis functions of the
representations of the total space group.

These representations are labelled by the star of the k vector as: 'k} and are of
dimensionality I x |, . Each irreducible “small representation” induces an irreducible

representation of the total space group. The induction formula is:

{k}v Kv The last symbol is 1 if the
1ﬂLI Mj (g) F (gL 9 9w ) 5g[1g Om €Gi subscript condition is true,

otherwise iIs zero
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NEUTRONS
FOR SCIENCE ®

Outline:

3. Magnetic Structure Determination. Magnetic
Structure Factors

57



By """_‘._'B'.r-atg,g Scattering oy

FOR SCIENCE ®

Intensity (non-polarised neutrons)

I, = NhN;_I_MLh °M1h

Magnetic interaction vector

M . =exM(h)xe =M(h)—e (e-M(h))

h — H + k <= Scattering vector e = —

58



3 ’F_é.fég_’tdr: Shubnikov gra%

o FOR SCIENCE ®

The use of Shubnikov groups implies the use of the
magnetic unit cell for indexing the Bragg reflections

M, =exMxe=M-e(e-M) locM M,
Nmag

Magnetic structure factor: M(H)=p>_ m, f (H)exp(2ziHrT,)
m=1

n independent magnetic sites labelled with the index |

The index s labels the representative symmetry operators of the
Shubnikov group: m,, =det(h,)o, h,m, IS the magnetic moment
of the atom sited at the sublattice s of site j.

M(H) = pZn:Oj f.(H)T,>_ det(h,)s, h, m exp{2ri[(H{h|t}, r, I}

The maximum number of parameters n, is, in general, equal to

3n magnetic moment components. Special positions make n < 3n. |



cHEmertiCture Factor: k-vectors il

FOR SCIENCE ®

M(h) = pin f: ()T, Z Syis EXP{271[(H +K){S t}. ri]}

J - Index running for all magnetic atom sites in the magnetic
asymmetric unit (j =1,...n)

s . Index running for all atoms of the orbit corresponding to
the magnetic site j (s=1.... p). Total number of atoms: N =X p;

{S ‘t}s Symmetry operators of the propagation vector
group or a subgroup

If no symmetry constraints are applied to S,, the maximum number of

parameters for a general incommensurate structure is 6N (In practice
6N-1, because a global phase factor is irrelevant)




gy and-representation analysis.

FOR SCIENCE ®

According to the Landau theory of phase transitions, it is
expected that the configuration of the magnetic moments can
be described in terms of the basis functions of the Irreps of

the propagation vector group G,. The Irreps of G, are tabulated
or can be calculated independently of the problem

But, knowing the classical Hamiltonian of the spin system,
the ground state (magnetic structure at T= 0 K) should

minimize the energy
H= > J¥.SiuSims +.-O(S")
jlar,im

The symmetry of the Hamiltonian may be higher than
the space group symmetry (e.g. isotropic exchange
interactions) .



 Wreh - representation analysis!
A reducible representation of the propagation vector group can be
constructed by selecting the atoms of a Wyckoff position and
applying the symmetry operators to both positions and axial vectors.
This gives rise to the so called Magnetic Representation of

dimension: 3n, (being n, the number of atoms in the primitive cell)

This representation can be decovmposed in Irreps and the number
of times a particular Irreps, I, is included can be easily

calculated y
1_‘Mag — 1_‘Perm ®FAxiaI — va I

The basis functions, for each Irrep and each sublattice of a Wyckoff
site, can be calculated by using the projection operator formula. The
basis functions are constant vectors of the form (1,0,0), (0.5, 1,0) ...
with components referred to the crystallographic unitary frame:

{a/a, b/b, c/c} attached to each sublattice.
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NEUTRONS

One can generate a reducible representation of G, by
considering the complex working space spanned by all the
components of Sy,

Each vector has three complex components.

As the atoms belonging to different sites do not mix under
symmetry operators, we can treat separately the different sites.
The index  Is then fixed and the index s varies from 1 to p;.
Being p; the number of sublattices generated by the site .

Case o=y and s
The working complex space for site j has di 0N n,=3x p; is
then spanned by unit vectors {e¥_J}&=1, 2,3 —or x,y, z and
s=1... p;,) represented as column vectors (with a single index
n) with zeroes everywhere except for n=a+3(s-1). The n,
vectors refers to the zero-cell.

FOR SCIENCE ®

Kj
ys

o

O R O O ---

Y, P;
Z, P,

63




3C _Qr symmetry analysis.of magnetig=77/

~ropresentation B RO

One can extend the basis vectors to the whole crystal by using the Bloch
propagation then forming column vectors of n, x N dimensions:

=) &9 exp(—27ikR,)
@l

If one applies the symmetry operators of G, to the vectors {e¥__},
taking into account that they are axial vectors, we obtain another vector
(after correcting for the Bloch phase factor if the operator moves the
atom outside the reference zero-cell) of the same basis. The matrices

M ., 5,(0) of dimension n; x n; = 3p; x 3p; corresponding to the different
operators constitute what 1s called the “Magnetic Representation” for
the site j and propagation vector k.
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MSreticrepresentation

FOR SCIENCE ®

The vectors {&!_} are formed by direct sums (juxtaposition) of normal
3D vectors ul__. Applying a symmetry operator to the vector position
and the unit spin associated to the atom js along the a-axis, changes
the index js to jgq and reorient the spin according to the nature of the
operator g={h|t, } for axial vectors.

gr =hr) +t,=r) +al; gs—(q,a))
(gugzs)ﬁ — dEt(h) Zhﬂn (uges)n :det(h) Zhﬂné‘n,a :det(h)hﬂa

O(g)alo(js = Zrzjq,as(g)sgq — ZeZEikaés det(h)hﬁaé‘sj,gqujq
B4 B4
Matrices of the magnetic representation
r, -9 (g)=e""* det(h)h 5

Mag £q,as La™q,ds
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and aX|aI I"" _ _ NEUTRONS

FOR SCIENCE ®

An Inspection 10 the epr|C|t expressmn for the magnetic
representation for the propagation vector k, the Wyckoff position j,
with sublattices indexed by (s, q), shows that it may be considered
as the direct product of the permutation representation, of dimension
p; x p; and explicit matrices:
. . Permutation
[oom = Py (9) = g% Oy representation

by the axial (or in general “vector”) representation, of dimension 3,
constituted by the rotational part of the G, operators multiplied by
-1 when the operator g={h|t, } corresponds to an improper rotation.

FAxial -V p (g) — det(h) h . Axial representation

i B zﬂikaés j Magnetic
Pirag = 1g.as (9)=¢ det(h) hﬂaaq % r-ep?'esen'ra'rion
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e fof the lrreps of G, ull

FOR SCIENCE ®

The magnetic representatlon hereafter called I',, irrespective of the
Indices, can be decomposed in irreducible representations of G,.

We can calculate a priori the number of possible basis functions of
the Irreps of G, describing the possible magnetic structures.

This number is equal to the number of times the representation I'V is
contained in Iy, times the dimension of I'V. The projection
operators provide the explicit expression of the basis vectors of the
Irreps of G,

1

v, (J) = n(GOK) gZGj 'y ..(9) O(g) 4 (1=1..1)
v, (j) = > T 4(9) > exp(2rikal,)det(hyh,, &) &9
59

(G Ok) 9eGox
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N@RSIOf the Irreps of G,

It 1S convenient to use, instead of the basis vectors for the whole set

of magnetic atoms in the primitive cell, the so called atomic
components of the basis vectors, which are normal 3D constant

vectors attached to individual atoms:

vi()= 2, Si(is)

('B,S:l,... pj

The explicit expression for the atomic components of the basis
functions is:

[ . )\
a 2 27rika§j]s i
SE (Js) oc Z Fl[,u](g)e det(h)5sj,g[q] Y
eGox
9 \ s /
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e ;L'l_thé_Sis.p_"f'Symmetry Analysi ﬂ

The fundamental hypothesis of the Symmetry Analysis of magnetic
structures is that the Fourier coefficients of a magnetic structure are
linear combinations of the basis functions of the irreducible
representation of the propagation vector group G,

Siis = ZC:ASEI(J-S)

nA

l

M(h) = pZOj f,(h)T, ZC&ZS‘;{(jS)exp{Zni h,r}
j=1 nA S

Magnetic structure factor in terms of basis vectors of irreducible
representations and refinable coefficients C; 69




BOistend-hasis functions of the irregst
P = s . ur FOR SCIENCE ®

Basis vectors

The coefficients C_, are the free parameters of the
magnetic structure. Called “mixing coefficients” by Izyumov

Indices:

K : reference to the propagation vector

v reference to the irreducible representation I

n : index running from1upton, = [ pag = va |
A+ index running from 1 up to dim (I'"") ®v
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oI c symmétric magnetic structures using /7 [/

whole space Group FORSCENCE ®

Up to now we have considered only the Irreps of the little group.
In some cases we can add more constraints considering the

representations of the whole space group. This is a way of
connecting split orbits (j and j’) due, for instance to the fact that

the operator transforming k into —k is lost in G,..

A 1
G=G, +9,G, +..9, G, :ZgLGk :Z{hthhL}Gk ke =hk
= =

Star of k: {K}={k, hk, hk, ... h K}={k,, K, ks, ...k, }

k

The little groups G, are conjugate groups to G,

g.s

r(9)=r"(g.99.) ¥ =0(g)¥} (4=1.1)

_ -1 ] _ J —r) J
G, =09.G.9, gufy =hrs+t, =r; +a
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oI c symmétric magnetic structures using /7 [/

NEUTRONS

whole space Group FORSCENCE®

kjS ZC Slr?/lv(.ls)

Applying the formulae we have for applying the operators to
the basis vectors we obtain for the atomic components the

following relations:

i _hopl _ il
g.r. =hr, +t, =1, +a,,

Ky ZﬁikLaés Ky -
S;r"(j'g)=e “det(R)R(h,) S’ "(Js)

If we consider that our magnetic structure can be described by a
representation of the whole space group the Fourier coefficients
of atoms that are not connected by a symmetry operator of G,

are related by:
27K

S, .. =e "o, det(R IR S,

K J'g
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,"é-' .Sy'.m,fr'netry Analysis %

FOR SCIENCE ®

The maximum number of free coefficients to describe the magnetic
structure is proportional to the number m of independent basis vectors

If we consider real coefficients when k =%2 H
n.=m x dim(I"™")

If we consider complex coefficients when k € IBZ
n. =2m x dim(Iv) -1
The analysis is successful when one of the following conditions apply:

ne=2m x dim(I"") -1 < 6p; (for k non equivalent to -k)
ne=m x dim(I"") < 3p; (for k equivalent to -k)
Where p; Is the number of sublattices (atoms) of site j. The effective number of

free parameters is lower in general as soon as one uses the relation between basis

vectors of different arms of the star {k} or select special direction in representation
space for dim(I'v) > 1. 73



Different ways of treating
magnetic structures In
FullProf



, _'trng-magnetlc structures In Full%

FOR SCIENCE ®

(1) Standard Fourier (all kind of structures) coefficients refinement with S,
described with components along {a/a, b/b, c/c} (Jbt = 1,10), orin

spherical coordinates with respect to a Cartesian frame attached to the unit cell
(Jbt = -1, -10).

(2) Time reversal operators, presently only for k=(0,0,0) (Jbt = 10 +
Magnetic symmetry keyword after the symbol of the SPG)

(3) Shubnikov Groups in BNS formulation (Jbt = 10 + Isy=2). Whatever

magnetic space group in any setting. The PCR file may be generated from a
mCIF file.

(4) Real space description of uni-axial conical structures (Jbt = 5)

(5) Real space description of multi-axial helical structures with elliptic envelope
(bt = -1, -10 + (More=1l & Hel = 2))

(6) Refinement of C ' coefficients in the expression: S s = ZC SE{ jS
Jbt = 1 and Isy=-2 75



Y lIctu res in FullProf &4/

FOR SCIENCE ®

(1) Standard Fourier coefficients (Jbt = +/-1, +/-10)

The Fourier component k of the magnetic moment of atom j1, that
transforms to the atom Js when the symmetry operator g.={S|t}, of G,
is applied (r1.=g.r,=S 1, +t), is transformed as:

SkJS =M. Skjlexp{—27z|¢kjs}

M(h) = pzn:Oj f. ()T, Z S,i8Xp {271[(H +k)H{S [t} ri—®,l1}

The matrices M, and phases ¢, can be deduced from the relations
between the Fourier coefficients and atomic basis functions. The
matrices M, correspond, in the case of commensurate magnetic
structures, to the rotational parts of the magnetic Shubnikov group
acting on magnetic moments. -



I\/Ia"',Uctu (es in FullProf £

FOR SCIENCE ®

Ho2BaNio5 (1) ndard Fourier coefficients

INat Dis Mom Prl Pr2 Pr3 tr Furth ATZ Npr More
2 0 0 0.0 0.01.0 0 0 0.000 5 0

I -1 <-- Space group symbol for hkl generation

INsym Cen La
4 1 1 1

|

s x,y,z2 The symbol of the space group
A is used for the generation of
MSYM u,v,w, 0.0 the parent reflections. In this
SYMM -x,-y,-z . . .
MSYM u,v,w, 0.0 case half reciprocal lattice is
MSTM v s, 0.0 generated

!

'Atom Typ Mag Vek X Y Z Biso Occ Rx Ry Rz
! Ix Iy Iz betall beta22 beta33 MagPh

Ho JHO3 1 O0 0.50000 0.00000 0.20245 0.00000 0.50000 0.131 0.000 8.995
0.00 0.00 81.00 0.00 0.00 191.00 0.00 181.00

! a b c alpha beta gamma
3.756032 5.734157 11.277159 90.000000 89.925171 90.000000

! Propagation vectors:
0.5000000 0.0000000 0.5000000 Propagation Vector 1
0.000000 0.000000 0.000000 7




ot ¥e factor: Shubnikov gro%

. S FOR SCIENCE ®

The use of Shubnikov groups implies the use of the
magnetic unit cell for indexing the Bragg reflections, the
concept of propagation vector is absent in this approach

M, =exMxe=M-e(e-M) |ocM )M,

Magnetic structure factor:

n independent magnetic sites labelled with the index |

The index s labels the representative symmetry operators of the
Shubnikov group: m,, =det(h,)o, h,m, IS the magnetic moment
of the atom sited at the sublattice s of site j.

M(H) = pZn:Oj f.(H)T,>_ det(h,)s, h, m exp{2ri[(H{h|t}, r, I}
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Maghe#Bgerictures in FullProf 24

FOR SCIENCE ®

(2) Time reversal operators, presently only for k=(0,0,0) (Jbt = 10
+
Magnetic symmetry keyword after the symbol of the space group)

Name : CuCr204

!
INat Dis Ang Prl Pr2 Pr rf Isy Str Furth ATZ pr More
3 0 0 0.00.01.0 0 0 1 0 611.770C 7 0

Fddd Magnetic symmetry below
! Time Reversal Operations on Crystal Space Group
1 -1 1-1 1

1Atom Typ Mag Vek X Y Z Biso Occ N type
Spc/
! Rx Ry Rz Ix Iy Iz MagPh / Line

below:Codes
! betall beta22 beta33 betal2 betal3 beta23 / Line below:Codes
Cu MCU2 1 O 0.12500 0.12500 0.12500 0.04112 0.12500 1 0
0.00 0.00 0.00 141.00 0.00
0.00000 -0.74340 0.00000 0.00000 0.00000 0.00000 0.00000 <-MagPar
0.00 191.00 0.00 0.00 0.00 0.00 0.00
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(3) Shubnikov Groups in BNS formulation (Jbt =

INat Dis Ang Prl Pr2 Pr3 Jbt Irf Isy Str Furth

18 0 0 0.0 0.0 1.

!
C ac number:"9.41"

2 0 1
! Centring vectors
0.00000 0.50000

! Anti-Centring vectors

0.00000 0.00000
0.00000 0.50000
! Symmetry operators
1l x,y,z,+1
2 x+1/2,-y+1/4,z,+1
]

1Atom Typ Mag Vek

Rx Ry Rz
! betall beta22
Dy 1 JDY3 1 O

5.10000 2.00000
0.00
Fe_ 1 MFE2 1 0

1.00000 3.00000
0.00

0 10 0

2 0

0 1

Mag .,,!- a BseriCtures in FullProf

NEUTRONS

4

FOR SCIENCE ®
10 + Isy=2).
ATZ Nvk Npr More
992.773 7 0

= <--Magnetic Space group symbol (BNS symbol & number)
! Nsym Cen N Clat N _Ant

2

0.50000

0.50000
0.00000

X
Ix
beta33
0.62500
0.00
1.00000
0.00
0.62500
0.00
1.00000
0.00

Y
Iy
betal2
-0.04238
0.00
0.00000
0.00
0.86347
0.00
0.00000
0.00

Z
Iz

betal3
0.12500
0.00
0.00000

0.00
-0.00391
0.00
0.00000
0.00

Biso
MagPh
beta23
0.44667
0.00
0.00000

0.74386
0.00
0.00000

Occ N type!

.00000 1

0.00

.00000 <-MagPar

.00000 1

0.00

.00000 <-MagPat

0

#



Maghe#Bgerictures in FullProf 24

FOR SCIENCE ®

(5) Real space description of multi-axial helical structures with
elliptic envelope (Jbt = -1,-10 + More=1 & Hel = 2)

Same as (1), but the Fourier component k of the magnetic moment of
atom |1, is explicitly represented as:

1 . .
Sj1 = E[m“juj +1m,, v ; [exp(—27ig,;)

With u;, v; orthogonal unit vectors forming with w; = u; x v;a direct
Cartesian frame.

Refineable parameters: My;, My, Gy
plus the Euler angles of the Cartesian frame {u, v, w},

81



€

FOR SCIENCE ®

lctures in FullProf oy

(5) Real space description of multi-axial helical structures with elliptic

envelope (Jbt = -1,-10 + More=1l & Hel = 2)

Jbt=-1

!

INat Dis Mom Prl Pr2 Pr3 Jbt Irf Isy Str Furth ATZ Nvk Npr More
3 0 00.00.01.0 -1 4 -1 0 0 0.000 -1 0 1

'Jvi Jdi Hel Sol Mom Ter Brind RMua RMub RMuc Jtyp Nsp Ref Ph Shift
3 0 2 0 0 0O 1.0000 1.0000 0.0000 0.0O0O0O0 1 0 0

!

P -1 <--Space group symbol

INsym Cen Laue MagMat
4 1 1 1

!

SYMM X, VY, 2

MSYM u, v, w, 0.00

'Atom Typ Mag Vek X Y Z Biso Occ Mr Mi Chi
! Phi Theta unused betall beta22 beta33 MagPh
Fe MFE3 1 O 0.12340 0.02210 0.25000 0.00000 0.50000 3.450 3.450 0.000
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15.000 25.000 0.000 0.000 0.000 0.000 0.00000
0.00 .00 0.00 0.00 0.00 0.00 0.00
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4

FOR SCIENCE ®

agNeHBg#riCtures in FullProf &K

(5) Real space description of multi-axial helical structures with elliptic

envelope (Jbt = -1,-10 + More=1l & Hel = 2)

Jbt=-10

INat Dis Ang Prl Pr2 Pr3 Jbt Irf Isy Str Furth ATZ Nvk Npr More
3 0 0 0.00.01.0 -10 4 -1 0 0 492.121 -1 0 1

!

!Jvi Jdi Hel Sol Mom Ter Brind RMua RMub RMuc Jtyp Nsp Ref Ph Shift
3 -1 2 0 0 0O 1.0000 1.0000 0.0000 O0O.00O0O0 1 0 0

!

P -1 <--Space group symbol

INsym Cen Laue MagMat
4 1 1 1

!

SYMM X, VY, 2

MSYM u, v, w, 0.00

'Atom Typ Mag Vek X Y Z Biso Occ N type

! Mr Mi Chi Phi Theta unused MagPh

! betall beta22 beta33 betal2 betal3 beta23 / Line below:Codes

Fe MFE3 1 O 0.12340 0.02210 0.25000 0.00000 0.50000 1 0
0.00 0.00 0.00 0.00 0.00

4.46000 4.46000 0.00000 10.00000 25.00169 0.00000 0.12110 <-MagPar

0.00 0.00 0.00 0.00 .00 0.00 0.00
83



FOR SCIENCE ®

Maghe#Bgerictures in FullProf 24

(6) Coefficients of basis functions refinement:

A magnetic phase has Jbt = 1 and Isy=-2

M(h)= ZO f.(h)T. ZC Z SK(js) exp{27z|[h r— @, !

The basis functions of the Irreps (in
numerical form) are introduced
together with explicit symmetry
operators of the crystal structure.
The refined variables are directly the
coefficients C1, C2, C3, ....

kjS ZC Slr:;‘t/ JS)

| %
Cn/”t



4

NEUTRONS
FOR SCIENCE ®

ac e o il

(6) Coefﬁuents of baS|s functlons refinement:

Ho2BaNiO5 (Irep 3 from Bas S
INat Dis Mom Prl Pr2 Pr3 Jb ytr Furth ATZ \ Npr More
2 0 0 0.00.01.0 0 0 0.000 5 0
I -1 e group symbol for hkl generatidn
! Nsym Cen Laue Ireps N Bas
2 1 1 -1 2
! Real (0) -Imaginary(l) indicator for Ci
0 O
!
SYMM x,vy,z
BASR 1 0 O 0O 0 1
BASI 0O 0 O 0O 0 O
SYMM -x,y,-z
BASR 1 0 O 0O 0 1
BASI 0O 0 O 0O 0 O
]
'Atom Typ Mag Vek X Y Z Biso Occ Cl Cc2
! C4 C5 Cé6 C7 C8 Cc9 MagPh

Ho JHO3 1 O 0.50000 0.00000 0.20250 0.00000 1.00000 0.127 8.993
0.00 0.00 81.00 0.00 0.00 71.00 181.00

! a b c alpha beta gamma
3.754163 5.729964 11.269387 90.000000 90.000000 90.000000
! Propagation vectors:
0.5000000 0.0000000 0.5000000 Propagation Vector 1

C3

0.000
0.00



NPPIRIRIS Tor-symmetry analysis i

FOR SCIENCE ®

The mreducuble r'epr'esen'ra'rlons of space groups can be
obtained consulting tables or using computer programs for
calculating them.

The basis functions of the irreducible representations
depend on the particular problem to be treated and they
have to be calculated by using projection operator formula.
A series of programs allow these kind of calculations to be
done. Doing that by hand may be quite tedious and prone to
errors.

Concerning magnetic structures three programs are of
current use: BasIreps (J. Rodriguez-Carvajal), SARAh
(Andrew Wills) and MODY (Wiestawa Sikora). One can use
also BCS (Perez-Mato et al.) or ISODISTORT (B.Campbell
and H. STOk@S) 86



’ ' f'-‘,f'_of Baslreps

Baslreps Gui Interface
File Rum Results Help Exit

D= @ 2|2 2w x|

4

NEUTRONS
FOR SCIENCE ®

-8 Basireps (May-2004, JRC-LLB) Worki
Irreducible representations of Space Groups Qi Orking
Basis functions of polar & axial vector properties glIEIUE4C18Y%
Code of files — e
| g SG symbol
Wttt e Dt |D:"-.DD:S'\EDHFEEHCESEDDE'\Drlandn_.ﬁ.mutnrial_KTbSF'l2 Browsze,. | or
Titl i | generators
Itie > it b agnetic structure of KTB3F12
Spau:eGr-:utup [HM.-"H?IIdS_IEmI?E:IIS] || 47 //
k-vector ——rg r — | | (| ez Brillouin
- — Kector 1.00000 0.00000 0.00000 rillouin Zone Label:
Zone label
AXIaI/pOIar | %" Polar Yectar f* Ayial Wector .
Mumber of Atoms: EE [ Ewplicit Sublattices v &tomsz in unit cell < Atoms N
Symbol wia w'a z/a Un |t Ce”
Number of Atorn # 1 Th3+ 0.00000 0.00000 0.50000
Atom # 2 |Thd+ 0.00000 050000 0.25000
atoms — Atoms
positions

87




(9 Btt-of Baslreps iy

FOR SCIENCE ®

Baslreps provides the basis functions (normal modes) of
the irreducible representations
of the wave-vector group G,

M, = > S,.exp{-27ikR}
(K

k V[
kjS Z C nl ( JS)
Output of Baslreps = Basis Functions (constant vectors)

Sy (i8)

88



4

NEUTRONS

= KEDIT - [D:Docs’ Conferences2003RSEFQ)-Madrid'Lamno3.bsr] — |EI|1|
€§| File Edit Actions Options ‘Window Help _IEIil
D= & Jrom - gl]l| ssleE] of~| %([E|@)

=== ;I

=> Atomic components of the BASIS FUNCTIONS using PROJECTION OPERATORS:
Calculation for SITE number: 1
{Only non-null functions are written)

+++++++++++++++
=> Basis functions of Representation IRrep( 1) of dimension 1 contained 3 times in GAMMA
+++++++++++++++

SYMM X,V.,Z -x+1,-y,z+1/2 x-1/2,-y+1/2,-z -x+1/2,y+1/2,-=z+1/2

Atoms: Mn 1 Mn 2 Mn 3 Mn 4

1:Re ¢ 1 0 0y ¢ -1 0 0y ¢ 1 0 0y ¢ -1 0 0)
2:Re 0 1 0y ¢ 0 -1 0y ¢ 0 -1 0y ¢ 0 1 0)
3:Re | 0 0 1) ¢ 0 0 1) ¢ 0 0 -1y { 0 0 -1)

————— LINEAR COMBINATIONS of Basis Functions: coefficients u,v,w,p,q
General expressions of the Fourier coefficients Sk(i) i=1,2,...nat

Fourier coefficient for SYMM x,v,Z Atom: Mn 1 | 0.5000 0.0000 0.0000
Sk{ 1): (u, v, w)

Fourier coefficient for SYMM -x+1,-y,z+1/2 Atom: Mn 2 0.5000 0.0000 0.5000
8k{ 2): (-u,-v, w)

Fourier coefficient for SYMM x-1/2,-y+1/2,-z Atom: Mn 3 0.0000 0.5000 0.0000
Sk{ 3): ( u,-v,-w )

Fourier coefficient for SYMM -x+1/2,y+1/2,-z+1/2 Atom: Mn 4 0.0000 0.5000 0.5000
sk{ 4): (-u, v,-w )

B a1 i o o o L B L L B S _ILI
»

sl ) %] il ) ] il ol

[ Line=437 [ CokE3 | AR=333 | Size=526 | Files=3 | ‘Windows=3 |OVR [RAW [1253AM

CE®



ﬁﬂ

NEUTRONS
§| File Edit Acktions ©Options Window  Help &1 =]
Dl =] & [ren = glal =52 o] 8w
====1 | il

X 4 z for site: 1 -
-> Mn 1 0.5000 0.0000 0.0000 HER > RT3
-> Mn 2 0.5000 0.0000 0.5000 : (-x,-y,z+1/2) + (1 , 0 , 0 )
-> Mn 3 0.0000 O0.5000 0.0000 to{x+Hl/2,-y+1/2 . -z) + (-1 , 0 ;0 )
-> Mn 4 0.0000 O0.5000 O0.5000 to{—xHl/2,yH1/2 , -z41/72) + (O , 0 0

=>» Basis functions of Representation IRrep( 1) of dimension 1 contained 3 times in GAMMA
Representation number : 1 for Site: 1
NHumber of basis functions: 3

————— Block-of-lines for PCR start just below this line
F -1 <—--8pace group symbol for hkl generation
!' Nsym Cen Laue Ireps N Bas

4 1 1 -1 3 FOI’mat fOI’ FU”PrOf

!' Real (0)-Imaginary(l) indicator for Ci

0 0 O
SYMM x,y,Z _ — —

BASR 1 0 ©0 ©0 1 0 ©0 0 1 k—(O’O,O), v=1,n=1,2,3
BASI ©0 O O © 0 0 ©0 0 O —1 i _

SYMM -x+1,-y,z+1/2 /1_11 J—l, 8_1121314

BASR -1 0 0 ©0-1 0 ©0 0 1

BASI 0O 0 0O 0O 0 0O 0O 0 0O
SYMM x-1/2,-y+1/2,-z

BASR 1 0 0O 0 -1 0 0
BASI 0O 0 0O 0O 0 0O 0O 0 0O
SYMM -x+1/2,y+1/2,-z+1/2

BASR -1 0 0O o 1 0O o 0 -1

BASI o 0 0O o 0 0O o 0 0O -
DI
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Steps for e feture determination using powder diffrisgm
p , Peak positions of
'"°P°5ft'°" ve;for'(s) < magnetic reflections
¢ Searc Cell parameters
Symmetry Analysis Propagation vector
BasIreps, MODY, < Space Group
SARAh, BCS, Isotropy Atom positions
Magnetic structure Integrated intensities
solution (Sim. Ann.) < Atomic components of basis
FullProf functions or Shubnikov group
symmetry operators
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e'flner.nent using powder diffrac]g@i&z

FOR SCIENCE ®

Magnetic structure
Refinement
FullProf

Input

Complete structural
< model should be
provided

Different runs of SAnn jobs may give you an idea of
the degeneracy of solutions for your particular problem.

In many cases the number of free parameters is too
much high to be refined by LSQ: try to reduce the
number of parameters or make soft constraints.

magnhetic moment

Use spherical components of Fourier coefficients in
order to have better control of the amplitude of the
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The End!
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