Why use symmetry?

- Electronic properties and structures are complex
 - Magnetism is the spin-dependent part
- Never as much information about them as we would like
 - Experimentalists typically deal with under-defined problems (there are too many possible solutions)
 - Symmetry is useful to introduce a grand simplifying structure (makes rules - followed and broken, classes of behaviour, and thus to simplify, clarify and reveal…)

An Introduction to Magnetic Structures
- Working with the propagation vector
 (Crystalline Solids)

Andrew S. Wills
UCL Chemistry
Overview of today

• Why do we need to invoke symmetry?

• Taking symmetry theory from point groups to magnetic structures
 – Translational periodicity
 • Increases complexity of the irreducible representations
 • Rotation-translation operations
 • The propagation vector, the k-vector

• A more sophisticated language
 – The little group of the propagation vector \(G_k \)
 – Permutation representation
 – Axial and polar vectors, representations
 – Magnetic representation
 – Basis vectors
 – Couplings - Time reversal and Landau theory

• Symmetries and frameworks
 – Representations and irreducible representations
 – Magnetic space groups (time reversal)

➡ Gives the language for understanding magnetic structures, for posing questions
Overview of this lecture
- Working with the propagation vector

- Using the symmetry language
 - Away from a shaken box → Frameworks and information
 - Reveal what magnetic structures are
 - Building up descriptions to make the range of possible magnetic structures
 - Pulling together the different symmetry ideas together within representation theory

Why should an experimentalist use symmetry?
- Never enough information...

- Magnetic structures are complex
 - Information is destroyed in many ways
 - The magnetic form factor: \(J(Q) \)
 - The magnetic structure factor: \(F_{\text{M}\perp}(Q) \)
 - Powder averaging
 - Domain averaging (powder, single crystal)
Some simple magnetic structures

Why should an experimentalist use symmetry?
- Never enough information…

• Magnetic structures are complex
• Information is destroyed in many ways
• The magnetic form factor: $J(Q)$
• The magnetic structure factor: $F_{M\perp}(Q)$
• Powder averaging
• Domain averaging (powder, single crystal)
Complex incommensurate magnetic ordering in B-Mn$_{1-x}$Ru$_x$ ($x=0.12$)

Why should an experimentalist use symmetry?
- Never enough information…

• Magnetic structures are complex
• Information is destroyed in many ways
• The magnetic form factor: $J(Q)$
• The magnetic structure factor: $F_{M\perp}(Q)$
• Powder averaging
• Domain averaging (powder, single crystal)
Why should an experimentalist use symmetry?
- Never enough information…

 - Magnetic structures are complex
 - Information is destroyed in many ways
 - The magnetic form factor: $J(Q)$
 - The magnetic structure factor: $F_{M\perp}(Q)$
 - Powder averaging
 - Domain averaging (powder, single crystal)

 ➔ Under-defined problem
 ➔ Hidden (unconsidered) possibilities

Definition of magnetic structures, phonons, electronic orbitals

 - A linear combination of plane waves (basis vectors, Fourier components)
 - Bloch waves - Eigenfunctions of a periodic Hamiltonian can be constructed from Fourier components

\[
\begin{align*}
\psi^k_j \cdot \nu & = \psi^k_i \cdot \nu e^{-2\pi i \mathbf{k} \cdot \mathbf{r}_{ij}} \\
\mathbf{m}_{ij} & = \sum_{\nu; \mathbf{k}} C_{\nu; \mathbf{k}} \psi^k_i \cdot \nu e^{-2\pi i \mathbf{k} \cdot \mathbf{r}_{ij}}
\end{align*}
\]

⇒ Once the moments in the primitive unit cell are defined, the \mathbf{k} vector defines every other spin in the structure
The propagation vector

\[\psi_{j,\nu} = \psi_{i,\nu} e^{-2\pi i \vec{k} \cdot \vec{t}_{ij}} \]

with \(\vec{k} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \)

\[\begin{align*}
\psi_{j,\nu} &= \psi_{i,\nu} \exp \left[-2\pi i \begin{pmatrix} 0 \\ 0.5 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix} \right] = -\psi_{i,\nu} \\
\psi_{j,\nu} &= \psi_{i,\nu} \exp \left[-2\pi i \begin{pmatrix} 0 \\ 0 \\ 0.5 \\ 0 \\ 0 \\ 2 \end{pmatrix} \right] = \psi_{i,\nu} \\
\psi_{j,\nu} &= \psi_{i,\nu} \exp \left[-2\pi i \begin{pmatrix} 0 \\ 0 \\ 0.5 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right] = \psi_{i,\nu} \exp [-\pi i] = -\psi_{i,\nu} \\
\psi_{j,\nu} &= \psi_{i,\nu} \exp \left[-2\pi i \begin{pmatrix} 0 \\ 0 \\ 0.5 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right] = \psi_{i,\nu} \exp [-2\pi \theta] = \psi_{i,\nu}
\end{align*} \]

The formalism of the propagation vector, \(\vec{k} \)

\[\tilde{m}_j = \sum_{\nu, \vec{k}} C_{\nu \vec{k}} \psi_{i,\nu} e^{-2\pi i \vec{k} \cdot \vec{t}_{ij}} \]

- I moment in the asymmetric unit (the primitive unit cell)
- Once \(\vec{k} \) is defined, total degrees of freedom = 3
What a magnetic structure (Néel state) is

- An ordered configuration of magnetic moments with a long correlation length
 - The order has some translational symmetry (the moments in different unit cells - related by primitive lattice vectors - are related)
- The orientations of the moments are related by symmetry (what happens in detail depends on where the moments are in the system and the host crystal structure)

What a magnetic structure isn’t

- A haphazard set of arrows (moments) in a box (crystal structure)
 - This could fail to have the translational symmetry relating moments in different unit cells (careful with centred cells!!!)
 - Magnetic structures are pretty well misunderstood and papers giving nonsensical structures an frequent problem…
- There are rules…
 - But they are open ended…
What different types of structures are possible?

- Lots:
 - Simple ferromagnetic structures (identical moments that align parallel)
 - Simple antiferromagnetic and ferrimagnetic structures (neighbouring moments align antiparallel)
 - Complex antiferromagnetic structures
 - Commensurate
 - Incommensurate (sine waves or spin density waves, helices, etc)

- Open ended → Mixtures
Which moments are related by symmetry?

Magnetic structures

- **k-vector**:
 - Propagate (a component of) the magnetic structure through the crystal
 - Define translational periodicity and orientation dependence

- **basis vectors**
 - Build up symmetry within primitive unit cell of G_0

$$\vec{m}_j = \sum_{\nu,k} C_{\nu}^{\vec{k}} \psi_{\nu}^{\vec{k}} e^{-2\pi i \vec{k} \cdot \vec{t}_{ij}}$$
How can magnetic structures be described - Simple moments and unit cells?

- People like to think in terms of m_x, m_y, m_z - Don’t!
- Begin with m_x, m_y, m_z (the components along parallel to the crystal axes)
 - This description is intuitive
 - Best used to describe the final structure, not to refine it
 - Instead use functions that are symmetry adapted to the system you are dealing with, these will allow more complex symmetries

- People like to use unit cells (magnetic space groups)
 - This description is intuitive
 - The description of a magnetic structure within MSG framework is equivalent to using representation analysis - it has to be
 - Beauty is in the eye of the beholder:
 - Both MSGs and representation theory need to be treated with care.
 - Couplings are treated differently, elegance of describing a structure depends on what you want and your preferred point of reference.

How can magnetic structures be described -an alternative approach

- Origins
 - The eigenfunctions of an electrons with a periodic Hamiltonian are Bloch waves.
 - with the form: $\tilde{m}_j = \sum_{\nu, \vec{k}} C_{\nu}^{\vec{k}} \tilde{\psi}_{\vec{k}, \nu} e^{-2\pi i \vec{k} \cdot \vec{t}_j}$
 - Magnetic structures are eigenfunctions of the spin-dependent electronic Hamiltonian and have the same form
 - If we expand the exponential, we see that it is made up of a Real cosine part and an Imaginary sine part
 $$\tilde{m}_j = \sum_{\nu, \vec{k}} C_{\nu}^{\vec{k}} \tilde{\psi}_{\vec{k}, \nu} \left[\cos(-2\pi \vec{k} \cdot \vec{t}_j) + i \sin(-2\pi \vec{k} \cdot \vec{t}_j) \right]$$
 - This formalism very general and we will see that it can describe simple and exotic structures, such as sinusoidal and helical structures
Basis vectors and k-vectors

- Simple structures and 'sine or cosine' structures
 - The translational properties of a magnetic structure may be described by
 \[
 \tilde{m}_j = \sum_{\nu,k} C^k_{\nu} \psi^e_{i,\nu} e^{-2\pi i \tilde{k} \cdot \tilde{t}_{ij}}
 \]
 - Working with only one basis vector, ignoring the coefficient for simplicity and expanding the exponential, this becomes
 \[
 \tilde{m}_j = \psi^e_{i,\nu} \left[\cos(-2\pi \tilde{k} \cdot \tilde{t}_{ij}) + i \sin(-2\pi \tilde{k} \cdot \tilde{t}_{ij}) \right]
 \]
 - If ψ is real and the propagation vector is such that the sine part is zero, e.g., components 0 and 1/2
 - Left with a simple cosine curve with the moments of the same amplitude.

A simple (cosine) structure
Basis vectors and k-vectors

- \(\Psi \) is real and \(k \) is such that the sine component is non-zero
 - Leads to \(m \) being complex, so need to make it real
 - The moment vector for an atom in the \(n \)th cell related to that in the zeroth cell by translation \(t \) is given by
 \[
 m_j = C_k \psi_{i,\nu}^k e^{-2\pi ik \cdot t_{ij}} + C_k \psi_{i,\nu}^{-k} e^{-2\pi i(-k) \cdot t_{ij}} \\
 m_j = C_k \psi_{i,\nu}^k e^{-2\pi ik \cdot t_{ij}} + C_k (\psi_{i,\nu}^k)^* e^{-2\pi i(-k) \cdot t_{ij}}
 \]
 - As
 \[
 \psi_{i,\nu}^{-k} = \psi_{i,\nu}^{*k}
 \]
 - Substitution and expansion of the exponential leads to
 \[
 \tilde{m}_j = 2Re(\psi_{i,\nu}^k) \left[\cos(-2\pi k \cdot t_{ij}) \right] + 2Im(\psi_{i,\nu}^k) \left[\sin(-2\pi k \cdot t_{ij}) \right]
 \]
 - Where the second term is zero as \(\Psi \) is real \(\rightarrow \) Amplitude modulated sine structure (spin density wave)
Basis vectors and k-vectors

- \(\Psi \) is complex and \(k \) is incommensurate
 - Leads to \(\mathbf{m} \) being complex, so need to make real moments
 - The atomic vector for an atom in the \(n \)th cell related to that in the zeroth cell by translation \(\mathbf{t} \) is given by
 \[
 \mathbf{m}_j = C^k_{\nu} \psi^k_{i,\nu} e^{-2\pi ik \cdot t_{ij}} + C^k_{\nu} (\psi^k_{i,\nu})^* e^{-2\pi i(-k) \cdot t_{ij}}
 \]
 - Substitution and expansion of the exponential leads to
 \[
 \bar{m}_j = 2Re(\psi^k_{i,\nu}) \left[\cos(-2\pi \mathbf{k} \cdot \mathbf{t}_{ij}) \right] + 2Im(\psi^k_{i,\nu}) \left[\sin(-2\pi \mathbf{k} \cdot \mathbf{t}_{ij}) \right]
 \]
 - If the real and imaginary parts are not parallel → circular or elliptical helix

- If the real and imaginary parts are not parallel → circular or elliptical helix
Building structures: basis vectors and k-vectors

- A circular helix
 - k incommensurate (or sine part is non-zero)
 - Ψ is complex, and has non-collinear real and imaginary components (equal magnitude) in a plane that does not contain k

- A conical structure
 - k incommensurate (or sine part is non-zero)
 - Ψ is complex, and has non-collinear real and imaginary components (equal magnitude) in a plane that does not contain k
 - $k=(000)$
 - Ψ is ferromagnetic and is perpendicular to the helix

- A cycloid
 - k incommensurate (or sine part is non-zero)
 - Ψ is complex, and has non-collinear real and imaginary components (equal magnitude) in a plane that contains k

Practice making some magnetic structures
Work with the Brillouin zone and types of k

e.g. FCC

\[\mathbf{k}' = \mathbf{k}h \pm \mathbf{\tau} \]

- The symmetry types of the different points in reciprocal space
- Different points, lines and planes have different compatible symmetry operations; different G_k
- (Care with axis system)
- Several notations exist, Kovalev, Miller and Love, etc

But what about unseen complexity?

- Types of domain (characterised by the types of symmetry elements lost during the magnetic ordering)

<table>
<thead>
<tr>
<th>Configurational (k) domains</th>
<th>(translational symmetry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pi domains</td>
<td>(time reversal)</td>
</tr>
<tr>
<td>Orientational (S) domains</td>
<td>(rotational symmetry)</td>
</tr>
<tr>
<td>Chiral domains</td>
<td>Centrosymmetry</td>
</tr>
</tbody>
</table>
Configurational domains (k domains)

- Arise if $G_k <> G_0$
- Operating with the paramagnetic symmetry elements on k
 generates a set of inequivalent vectors which form the star of k,
e.g. $k_1 = k_i E$, $k_2 = k_i R_2$, $k_3 = k_i R_3$, $k_4 = k_i R_4$.
- e.g. FCC lattice

\[
\begin{align*}
\vec{k}_1 &= \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right) \\
\vec{k}_2 &= \left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right) \\
\vec{k}_3 &= \left(\frac{1}{2}, -\frac{1}{2}, \frac{1}{2} \right) \\
\vec{k}_4 &= \left(\frac{1}{2}, \frac{1}{2}, -\frac{1}{2} \right)
\end{align*}
\]

- Each vector in the star generates a different (equivalent) configuration domain
- Each configuration domain gives a completely separate set of magnetic reflections at positions $\pm k$ from the reciprocal lattice nodes
- Each set of reflections belongs to a distinct region of the crystal, hence effectively to a single state
π- domains (time reversal)
- Regions in which all the moment directions in one domain are reversed with respect to those in the other
- The two domains are related by the time inversion operator
- Ferromagnetic domains provide a simple example
- The intensity and the polarisation scattered by the two domains are identical

Slip and translational domains
- Regions in which all the moment directions in one domain are related to another by translational symmetry
- The intensity and the polarisation scattered by the two domains are identical

Time reversal reverses magnetic moments

Apply translation \(t \)
Orientational domains (S-domains)
- Occurs when the symmetry of the magnetic structure is less than that of the crystal space group
- S domains are related by the symmetry elements that are lost (\(k \) does not change)
- The relationship between \(m \) and \(k \) is the same for all S domains
- Distinguish by single crystal diffraction, not powder diffraction

\[
e.g. \text{cubic with } k = \left(0, 0, \frac{1}{2}\right)
\]

Chiral domains
- Occurs when
 - Paramagnetic space group is centrosymmetric but the magnetic structure is not
 - The magnetic moments on centrosymmetrically related sites are not parallel
 - Incommensurate structures
 - when \(2k \) is not a reciprocal lattice vector so the configurational group is acentric
 - In this case the two chirality domains correspond to \(+k \) and \(-k \).
 - They both give contributions at (hkl) \(\pm k \).
Fourier description of magnetic structures

- Each single domain follows

\[m_j^k = \sum_{\nu, \ell} C_{\nu, \ell}^k \psi_\nu^k e^{-2\pi i \vec{k} \cdot \vec{\ell}} \]

- In the absence of unbalancing constraints (applied magnetic or electric field, pressure, etc) these will have the same energy

- Leads to questions
 - are there S-domains
 - multi-k or k-domain?

Example of diffraction pattern (structure) with 2k vectors:

\[\left(\frac{1}{2}, 0, 0 \right) + \left(0, \frac{1}{2}, 0 \right) \]

- Both will contribute to reflections at the same (hkl)
- Cannot distinguish by simple diffraction
 - 2k structure
 - 2 k-domains
\[k_1 \cdot k_2 = 0, 1 \cdot k = 0, 0 \]

\[k_1 \cdot k_2 = 0, 0, 0 \]

k-domains vs multi k

- **External constraint, e.g.**
 - Applied magnetic field
 - Pressure
- Leads to
 - Unbalancing domains
 - Domain repopulation
- Multi-k and k domains structures, S-domain structures will respond differently

\[k_1 = (1/2, 0, 0) \quad k_2 = (0, 1/2, 0) \]

Diffraction - Single crystal vs. powder

- **Single crystal diffraction**
 - (diffraction pattern projected onto a line)
 - Cannot even see k-domains/multi-k
 - But you can always consider the possibilities and effects such as single-ion anisotropy...

- **Powder diffraction**