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Why use symmetry?

• Electronic structures are complex
• We rarely have as much information about them as we would like

– Experimentalists typically deal with under-defined problems 
(there are too many possible solutions)

– Useful to introduce a grand simplifying structure (makes rules, 
classes of behaviour, and thus to simplify, clarify and reveal…)



Group theory (Representation Theory)

• Symmetry is a framework and method 

– Simplifies analysis of a problem in systems possessing some degree of symmetry

• What is allowed vs. what is not allowed 

– And what might be allowed iff… 

– Neumann's principle (relating symmetry to physical properties)

•  If a crystal is invariant with respect to certain symmetry elements, any of its physical 
properties must also be invariant with respect to the same symmetry elements

• Keyword: Invariance of the physical properties under application of symmetry 
operators.



• Symmetries in solids are subtle 

– A few hours to learn (!); a lot longer to master

– They have to be

• Look at what their job is!

– Takes time to learn what electronic structures are possible and what 
they involve:

• But, the language of representations is one that we are used 
to from other contexts

Difficulties
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~m = C1
~ 1 + C2

~ 2 + ...



We have already seen that there is never enough 
information…

• Magnetic structures are complex

• Information is destroyed in many ways

• The magnetic form factor : J(Q)

• The magnetic structure factor : FM⊥(Q) 

• Powder averaging

• Domain averaging (powder, single crystal)

→ Under-defined problem
→ Hidden (unconsidered) possibilities



�0

�1• ground state, �0

• excited state, �1

• transition operator,

ˆO

• transition integral
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�1| ˆO|�0
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• if �1 and

ˆO�0 have di↵erent symmetries, the integral is zero

(use

ˆO = µ̂ for IR,

ˆO = ↵̂ for Raman, etc)

Spectroscopic transitions - working with 
eigenfunctions



Molecular orbitals - interactions between AOs with same symmetry

Orbitals of 
central atom

SALCs of H 
atoms

https://en.wikipedia.org/wiki/Molecular_orbital_diagram

Molecular orbitals are linear 
combinations of atomic orbitals 
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X
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Phase transitions in solids

• Phase transitions often involve going 
between phases with different symmetry

• Transition are classified as either 1st order 
(inhomogeneous) or 2nd order 
(homogeneous/ continuous)

• 2nd order transitions follow Landau theory
• A simple example: 

Paramagnetic → Antiferromagnetic

Symmetry operations are lost, 
e.g. “time-reversal”, the 
symmetry under reversal of 
the electric current

High symmetry phase,
group G0 

Low symmetry phase, 
group G1 



Starting place - symmetry operations in solids



And …  
there is translational symmetry

• The unit cell

• (Perhaps one of the most misunderstood symmetries as things 
often go wrong when there are moments involved)



Groups - putting these operations together  
              - point groups and space groups

G0

– a set of elements A,B,C…
– the product of 2 elements is a member of the group AB∈G
– the product is associative A(BC)=(AB)C
– there exists a unique identity (E)
– every element has a unique inverse 

AA-1=A-1A=E

– (The order of a group is simply the number of elements in a 
group)

• We will note the order of a group h.



• 4 different operations

Applying operations in sequence  
– the multiplication table

C2v E C2(z) σxz σyz

E E C2(z) σxz σyz

C2(z) C2(z) E σyz σxz

σxz σxz σyz E C2(z)

σyz σyz σxz C2(z) E

C2v E C2(z) σxz σyz

z

x
y



Block-diagonal matrices - Simplifying matrix 
representatives

• Change to block structure. Blocks are multiplied separately
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Irreducible representations
• In matrix terms: 

– A representation is reducible if there is a similarity transformation (change 
of basis) that sends all the matrices d(g) to the same block-diagonal form

– All other representatives can be written in terms of these IRs
• A finite group has a limited number of these IRs
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IRs and the Great Orthogonality Theorem

• If D is a reducible representation. 
• The number of times that a representation i appears in a 

decomposition is

ni =
1

h

X

g2G

�i(g)
⇤�(g)

nA1 = 1/6(1⇥ 3 + 2⇥ [1⇥ 0] + 3⇥ [1⇥ 1]) = 1

nA2 = 1/6(1⇥ 3 + 2⇥ [1⇥ 0] + 3⇥ [�1⇥ 1]) = 0

nE = 1/6(2⇥ 3 + 2⇥ [�1⇥ 0] + 3⇥ [0⇥ 1]) = 1

C3v E 2C3 3σv

A1 1 1 1
A2 1 1 -1
E 2 -1 0

D 3 0 1



Groups- and their irreducible representations

Irreducible representations
– a set of matrix representatives that have a homomorphism 

with the automorphism group of the object
• automorphism= this is the symmetry of the object, a way of mapping 

an object to itself that preserves its structure 
• homomorphism=mapping between 2 algebraic structures, the algebraic 

structure of the group is preserved
• “a set of matrices, each corresponding to a single operation of the 

group, that can be combined amongst themselves in a manner parallel 
to the group elements”

• (Cotton, Chemical Application of Group Theory)



IRs- point groups and space groups

Irreducible representations
– “a set of matrices, each corresponding to a single operation of 

the group, that can be combined amongst themselves in a 
manner parallel to the group elements”

– In point groups irreducible representations are order 1 (A,B), 2 
(E), 3 (T), e.g. T2g, Eg

– In space groups the rotational-translational operations lead to 
IRs of order up to 6

• Marked increase in the complexity of possible structures

➡ Irreducible and fundamental - building blocks of symmetries



Irreducible Representations of Space Groups



Material symmetries

0. Magnetic structures as Fourier sums
1. Space group (before the ordering), G0

2. The ordering wave vector, k
3. The symmetry that is compatible with k, the little group Gk

4. The symmetries of Gk, the irreducible representations
5. The symmetry of a magnetic moment in a crystal structure, i.e. the position 

(permutation representation) and the moment itself (axial vector)
6. The symmetry of, and within, basis vector spaces
7. Symmetry of the Hamiltonian



Material symmetries

0. Magnetic structures as Fourier sums
1. Space group (before the ordering), G0

2. The ordering wave vector, k 
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6. The symmetry of, and within, basis vector spaces
7. Symmetry of the Hamiltonian



Bloch waves

The propagation vector
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 k-vector reduces space group symmetry : G0→Gk

Constructing Gk (the space group of the propagation vector) 

–  Need only consider the rotational part (h) of symmetry 
operation (g):

– a subset of space group G0 elements A,B,C… that leave the k-
vector invariant Gk∈G0

– i.e. defines those that are compatible with the translational 
symmetry of k

i.e.
Reciprocal lattice vector

g = {h|~⌧}

~k0 = ~kh± ~⌧

G~k ✓ G0



Space group:  G0. 
Space group of k-vector: Gk

#227 k=(0 0 0) (Γ) 48 
elements

k=(0.5 0 0) (K) 8

k=(0.5 0.5 0.5) (L) 12

• Different points, lines, planes correspond to different 
symmetries. They will have different Gk.



The Brillouin zone and different Gk, e.g. FCC

• The symmetry types of the different points in reciprocal space
• Different points, lines and planes have different compatible symmetry operations; different Gk
• (Care with axis system)
• Several notations exist, Kovalev, Miller and Love, etc

~k0 = ~kh± ~⌧

http://nanosurf.fzu.cz/wiki/doku.php?id=band_structure



The  star of the propagation vector  
e.g. k=(0.5 0.5 0.5) in space group  Fd-3m, 

m
~k
j =

X

⌫,~k

C
~k
⌫  

~k
⌫ e�2⇡i~k·~t



Back to the space group G0

• G0 is the space group of the crystal structure a set of elements 
A,B,C…

– Group structure of symmetry operations

• the product of 2 elements is a member of the group A∈BG

• the product is associative A(BC)=(AB)C

• there exists a unique identity (E)

• every element has a unique inverse 

• AA-1=A-1A=E

– Group has irreducible representations

– Gk is also a space group



Irreducible Representations of Space Group Gk

• Constructed from the little space group Gk 

• Character tables are not enough 
• Source is important- calculated or tabulated



Summary of lecture  
Part 1- Recap of group theory and representations

• Why do we need to invoke symmetry?

• Taking representation theory from point groups to crystalline solids

– Translational periodicity
• Increases complexity of the irreducible representations
• Rotation-translation operations

– Representations and irreducible representations (up to 6x6 matrices)

➡Goal : starting to think about complex symmetry

Next  - Projection - making symmetry adapted functions



–What are we trying to do? 

• Find out what types of structure are possible for moments at 
atomic positions

–How? 

–Look at these symmetries in turn 

•Permutation representation
–How the atoms are interchanged under the symmetry 
operations of Gk

•Axial vector representation
–How the magnetic moments 
–are rotated  under the 
–symmetry operations of Gk

–Decompose symmetries using IRs

Projection of basis vectors : from IRs to BVs



BC
CB
AA

→

→

→

:1σ

€ 

σ2 :
A→C
B→ B
C→ A

€ 

3+ :
A→ B
B→C
C→ A

€ 

χ(σ1) =1

€ 

χ(σ2) =1

€ 

χ(3+) = 0

The permutation representation Γperm

• Recap- a crystal structure is invariant under the symmetry operations 
of its point/space group. However, equivalent positions can be 
interchanged, permuted

• Γperm describes how all the atoms are permuted



Symmetry of magnetic moments and 
displacement vectors under improper rotations

Polar

Axial

Polar vectors are reversed by inversion operation, axial vectors are not.



Symmetry of magnetic moments and 
displacement vectors under improper rotations

Polar

Axial

Polar vectors are reversed by inversion operation, axial vectors are 
not. Mathematically, we can deal with this by multiplying by the 
determinant

R(I) ~M = det(h)
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Putting it all together- the magnetic 
(displacement) representation
• The permutation representation and the axial vector 

representation are independent

• The magnetic representation can be decomposed into 
IRs of Gk

• The number of times IR Γν appears is given by

n⌫ =
1

n(G~k)

X

g2G~k

��mag (g)��⌫ (g)
⇤

�mag =
X

⌫

n⌫�⌫

�
mag

= �
permutation

⇥ �
axial



Putting it all together- the magnetic 
(displacement) representation

• The number of times IR Γν appears is given by

• This depends on the atomic site and may look like

n⌫ =
1

n(G~k)

X

g2G~k

��mag (g)��⌫ (g)
⇤

or

�mag,6c = 2�(1)
1 � 0�(1)

2 � 2�(2)
3

�mag,2a = 1�(1)
1 � 1�(1)

2 � 0�(2)
3



Basis functions

• Symmetry adapted functions 
with the same symmetry as 
the IR- ‘associated’. Not 
unique. Made by projection

 i�
⌫ =

X

g2Gk

d�⌫ (g)
⇤�i,gi e

�2⇡ik·(rgi�ri)det(h)Rh��

and a series of test functions, e.g.
~�1 = (1 0 0), ~�2 = (0 1 0), ~�3 = (0 0 1)



An example of using *basis functions and exploring basis 
vector spaces 

*basis vectors 
-symmetry types that are adapted to the problem…



The Dzyaloshinsky-Moriya effect in  
Mn[N(CN)2]2 and Fe[N(CN)2]2 - canted ferromagnets  

A. Lappas et al, Phys. Rev. B 67, 144406  (2003)
A.S. Wills and A. Lappas, J. Phys. Chem. Solids 65, 65 (2004)

Pnnm



The Dzyaloshinsky-Moriya effect in  
Mn[N(CN)2]2 and Fe[N(CN)2]2 - canted ferromagnets  

C.R Kmety et al, Phys. Rev. 
B 62, 5576  (2000).



Mn[N(CN)2]2 and Fe[N(CN)2]2  
– possible magnetic structures  

Space group Pnnm, k=(000), m1=(0 0 0) and m2=(.5 .5 .5)



Mn[N(CN)2]2 and Fe[N(CN)2]2  
– Linear combinations and possible magnetic structures  

• ~ = c1 ~ 1

• ~ = c2 ~ 2 + c3 ~ 3

• ~ = c4 ~ 4 + c5 ~ 5

• ~ = c6 ~ 6

~mj =
X

⌫,~k

C
~k
⌫
~ 
~k
i,⌫ e�2⇡i~k·~tij



Mn[N(CN)2]2 and Fe[N(CN)2]2  
– possible magnetic structures  

For D-M interaction to exist, the 
antiferromagnetic and ferromagnetic 
components must have the same 
symmetry : Γ3 and Γ5



• Define a degree of freedom

– Follows the symmetry of the associated IR
– Can be used to classify symmetry

• Does not decrease number of degrees of freedom

– i.e. 3 moment degrees of freedom per atom
– n atoms will have 3n basis vectors
– Simplicity from dealing with the categories separately

• Define symmetry as a linear combination, refine in terms of 
mixing (weighting) coefficients

Basis vectors

~m =
X

i

Ci
~ i



• A purely imaginary basis vector is as real as a purely real one…

 

– They are equivalent

• The linear combination of basis vectors can be sophisticated, e.g. for basis 
vectors related by complex conjugation

There is real and there is real... ~m =
X

i

Ci
~ i

~ 1 + ~ ⇤
1 = 2Re(~ 1)

(�i⇥ ~ 1) + (i⇥ ~ ⇤
1) = 2Im(~ 1)

~ 1 = (1, 0, 0) ; ~ 2 = (i, 0, 0)

~ 2 = i.~ 1



Putting it all together

Projection of magnetic modes 
(basis vectors) associated with the 
Irreducible Representations (IRs) 

“A set of matrices, each corresponding to a single 
operation in a group, that can be combined amongst 
themselves in a manner parallel to the group 
elements.”
(Cotton, Chemical applications of group theory)

C3v E C3+ C3- σv σv’ σv’’
E E C3+ C3- σv σv’ σv’’

C3+ C3+ C3- E σv’ σv’’ σv

C3- C3- E C3+ σv’’ σv σv’
σv σv σv’’ σv’ E C3- C3+

σv’ σv’ σv σv’’ C3+ E C3-

σv’’ σv’’ σv’ σv C3- C3+ E

G0 G~k

~k



Summary of lecture  
Part 2- To atomic moments

• From irreducible representations to basis vectors

– The propagation vector, the Brillouin zone
– From the space group G0 to the little group of the propagation vector Gk
– Permutation representation
– Axial and polar vectors, representations
– Magnetic representation
– Basis vectors

➡ Goal : introduce the language for understanding magnetic structures



Landau Theory

• Continuous transitions (2nd order) have rules  
– often - only one IR becoming critical
– no third order invariants

• Structure with mixed IRs are possible 
• Sequential transitions
• 1st order transition
• Higher order contributions in Landau theory, e.g 4th order coupling 

terms
• …



• 3rd order parameters
– Stop the transition being second order

• The ‘law’ of ordering according to a single IR becoming critical
– A ‘law’ or a starting point? 

• Can a magnetic structure involve more than one IR?
– Yes

• If it does not introduce 3rd order invariants
• If there is a coupling term. Remember transition integrals? 

– e.g. ,  the coupling could involve a secondary order parameter (mixing coefficients 
another IR)

• Still have only a single Tc, 
• Does not drive the symmetry breaking

– Would not break all the symmetry elements that the primary order 
parameter does

– Causing the critical parameter to be larger 
• Have a smaller amplitude than the primary order parameter 
• The coupling creates polynomials in the free energy (typically we work with 

order 4)

Some results of Landau theory 

Z
�⇤
1Ô�0 d⌧



Landau Theory- When it doesn’t work it might still 
be useful :-)

• Irreducible representations still classify symmetry types
• The observation of several IRs involved in a magnetic transition 

(structure) gives you information about the energy drives
• The difference between weakly and strongly first order

Ĥ Ĥ Ĥ Ĥ+ + +
1 2 3 4



Couplings and time reversal

• Not all couplings come from Landau theory 
• Antiunitary symmetry, e.g. complex conjugation in quantum 

mechanics 
• Corepresentation theory (Wigner)

• There are 3 types of co-irreducible representations: a, b, c
• a, are simple
• b, built from 2 equivalent IRs
• c ,built from 2 inequivalent IRs, i.e. combine IRs

• Spins are quantum …

 ⇤ 



OK, I have data where do I go from here?
• Do we know the k vector 

– We hope
– Do we know that there is more than one? Maybe…

• Carry out representational analysis calculations for each separately 

• Do we know which IR is primary? 

– No, so cycle through IRs until you find it
– At this point freely explore coefficients

• Refine moment orientations 

– Refine mixing coefficient combinations
– Add basis vectors within IR if they improve fit

• Add secondary IR if the fit is improved  

– Search through mixing coefficient combinations
• Add another k vector if there are peaks that do not line up 

» Repeat as needed



Things to keep in mind
• k-vectors in centred cells need to be handled with care, e.g. k=(100) in BCC 

– When in doubt, convert to primitive and transform to centred setting
• Representational analysis calculations do not get rid of degrees-of-freedom 

– Symmetry is about classifying them
– Deal with only a few variables at a time. More models, each with fewer variables
– Order parameter directions mean even fewer at a time (only a couple may be 

active)

• Basis vectors can be complex 

– Enjoy what this can make as a structure
– The space that they define shows you what is possible within your unknown 

Hamiltonian. Think of the physics you are looking for

• Relate your analysis to other information 

– Don’t use diffraction in isolation
• Consider the information that is lost 

– e.g. by powder or domain averaging



Things to keep in mind
• If you need to couple IRs 

– Do it consciously. - think about it (Does this make sense? How does it work with 
Landau theory? What can cause it?)

• Are there things that you cannot see? 

– e.g. multi k structures. Very cool and we know little about them (because we rarely 
think about them)

• Multiple phase transitions and 1st order transitions 

– Typically high temperature one is 2nd order; the low temp one is 1st order (often 
involving another IR coming in)

– 1st order does not follow Landau theory, but might (mostly). A sliding scale

– Treat the ‘single IR law’ as a reference. Look for where it is broken and think about 
what this means!

• Building up magnetic structures 

– The Fourier sum can build any magnetic structure. Just keep adding what you need. 
m
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Add what you need, when you need it … 
- Building-up the magnetic structure

• Ockham’s razor 

– pluralitas non est ponenda sine necessitate ("plurality should 
not be posited without necessity”)

– Work out what the necessity is
– Think about why! 
– There lies the fun…
– There lies the physics

➡ Use with symmetry to help define the question ‘why’ 



Summary of lecture  
Part 3 - Phase transitions 

• Introduction to Landau theory
• Continuous phase transitions
• Opening the door - a zeroth order approximation
• Energy scales - a hand waving approach
• Couplings - food for thought
• Symmetry and phase transitons

• My ‘building-up’ principle

➡ Goal : Using necessity - Ockham’s razor. Necessity is a clear observation that allows 
you to ask why it is needed, e.g. single-k, multi-k, single IR, mixed IRs, which BVs


