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Why use symmetry?

* Electronic structures are complex
* We rarely have as much information about them as we would like

— Experimentalists typically deal with under-defined problems
(there are too many possible solutions)

— Useful to introduce a grand simplifying structure (makes rules,
classes of behaviour, and thus to simplify, clarify and reveal...)



Group theory (Representation Theory)

* Symmetry is a framework and method

— Simplifies analysis of a problem in systems possessing some degree of symmetry

* What is allowed vs. what is not allowed

— And what might be allowed iff...
— Neumann's principle (relating symmetry to physical properties)

» If a crystal is invariant with respect to certain symmetry elements, any of its physical
properties must also be invariant with respect to the same symmetry elements

» Keyword: Invariance of the physical properties under application of symmetry
operators.



Difficulties

* Symmetries in solids are subtle

— A few hours to learn (!); a lot longer to master

— iy have @ oe

* Look at what their job is!

— Takes time to learn what electronic structures are possible and what
they involve:

m = 011;1 i 021;2 e

* But, the language of representations is one that we are used
to from other contexts



We have already seen that there is never enough
information...

* Magnetic structures are complex

* |nformation Is destroyed in many ways
> e regnetie erm katers ()

o The magnetic structure factor: Fy | (Q)

* Powder averaging

* Domain averaging (powder, single crystal)

— Under-defined problem
— Hidden (unconsidered) possibilities



Spectroscopic transitions - working with
eigenfunctions

ground state, ¢ I ()|
excited state, ¢y

A

transition operator, O
transition integral fgb’{OAqbg ol = <¢1|O\q50> — Jo}

if ¢1 and Odyo have different symmetries, the integral is zero
(use O = [ for IR, O = & for Raman, etc)



Molecular orbitals - interactions between AOs with same symmetry
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Orbitals of Molecular orbitals are linear SALCs of H
central atom combinations of atomic orbitals atoms

V= Z@Cﬁi

https://en.wikipedia.org/wiki/Molecular orbital diagram



Phase transitions in solids

» Phase transitions often involve going High symmetry phase,
between phases with different symmetry group Go

e Transition are classified as either |st order —
AACMCRENSOLS) ©F ANG Clraer
(homogeneous/ continuous)
—

* 2nd order transitions follow Landau theory

oA slmple exanple:
: . , Low symmetry phase,
Paramagnetic = Antiferromagnetic aroup G

/@@_ ® g >0 Symmetry operations are lost,
- e.g."time-reversal”, the

@ = Q < oo symmetry under reversal of

@ @ /@ 8\ S the electric current
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Starting place - symmetry operations in solids

Symmetry operation Symmetry element Symbol
Identity (do nothing) E
Rotation by 360°/n n-fold axis C,

(a ‘proper’ rotation)

Reflection mirror plane Oy. Op OT Oy
Inversion Centre of Inversion )
Rotation by 360°/n n-fold axis 4+ a centre of inversion Sh
followed by inversion
(an ‘improper’ rotation)
TABLE I. Symmetry operations in point groups (isolated molecules).
Rotation + translation Screw axis N;

Reflection + translation

Glide plane

a. b, c. n. d

TABLE II. Additional symmetry operations present in extended solids (crystals).



And ...
there is translational symmetry

e The unit cell

* (Perhaps one of the most misunderstood symmetries as things
often go wrong when there are moments involved)
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Groups - putting these operations together
- point groups and space groups

Go
— & set of elemens A5 L, .
— the product of 2 elements is a member of the group ABeG
— the product Is associative A(BC)=(AB)C
— there exists a unique identity (E)
— every element has a unique Inverse

AAT=ATA=E

— (The order of a group Is simply the number of elements In a
group)

* We will note the order of a group h.



Applying operations in sequence

— the multiplication table

Z

4

Y

* 4 different operations

Cov E Co(z) Oxz

Cov E |(Cx(z)| Oxz | Oyz
E E |C2(z)| Oxz | Oyz
Cao(z) [C2(z) | E Oyz | Oxz
Oxz | Oxz | Oyz E | C2(2)
Oyz | Oz | Oxzx |Co(z)| E
Oyz




Block-diagonal matrices - Simplifying matrix

representatives

c(yz)
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Irreducible representations

e |n matrix terms:

— A representation is reducible If there is a similarity transformation (change
of basis) that sends all the matrices d(g) to the same block-diagonal form

— All other representatives can be written in terms of these IRs

* A finite group has a limited number of these IRs

() = (

N—"
|
N
N—"




IRs and the Great Orthogonality Theorem L -
-L;_,ﬁ

- D s & redud ble represeriEilon,

S ne nuUrmeEr o Ues et 2 Epreseiitertlicn | 2R pears (n 2
decomposition Is

n; = % > xi(9)*x(9)

gelG

nA; =1/6(1 x3+2x[1x0+3x[1x1])=1
nA; =1/6(1 x34+2x[1x0+3x[-1x1])=0
nkE=1/62x3+2x[-1x0+3x[0x1])=1




Groups- and their irreducible representations

Irreducible representations

— a set of matrix representatives that have a homomorphism
with the automorphism group of the object

* automorphism= this is the symmetry of the object, a way of mapping
an object to itself that preserves its structure

* homomorphism=mapping between 2 algebraic structures, the algebraic
structure of the group is preserved

* "a set of matrices, each corresponding to a single operation of the
group, that can be combined amongst themselves in a manner parallel

to the group elements”

* (Cotton, Chemical Application of Group Theory)



IRs- point groups and space groups

Irreducible representations

— "a set of matrices, each corresponding to a single operation of
e greup, el can 188 cemeinea anmengst INEMmsEives i 8
manner parallel to the group elements”

— In point groups Irreducible representations are order | (AB), 2
(E), 3 (1), eg Ty E,

— In space groups the rotational-translational operations lead to
IR6 @i ereer Up o 6

* Marked increase in the complexity of possible structures

= |rreducible and fundamental - building blocks of symmetries



A

Irreducible Representations of Space Groups

Table 1
Irreducible representations of R3c—C63v. k =0 and R3m-—C§v. k=0andk= [% -} -;-]

¢ c3 c3?

\ ' or or or

Symmetry operations / 3 3? m m3 m3?
Representations
ry Ay T1 1 1 1 1 1 1
Iy A,y T2 1 1 l -1 -1 ~1

R ) ) G)E ) )

Magnetic moment

transformations
example l Slx SIz Sly "Szy
Sly S3x S2z ‘S2x
Slz sSy SZx '322

-SZ)'

—Szx
-82}'
-S1z
—SI)’

—Szz
-533
_53y
‘S3x




Material symmetries

Magnetic structures as Fourier sums

Space group (before the ordering), G,

The ordering wave vector, k

The symmetry that is compatible with k, the little group G,

The symmetries of G,, the irreducible representations

e O Y 0 ©

The symmetry of a magnetic moment in a crystal structure, i.e. the position
(permutation representation) and the moment itself (axial vector)

o

The symmetry of, and within, basis vector spaces

=

Symmetry of the Hamiltonian



Material symmetries 43 S5

e O Y 0 ©

G2

Magnetic structures as Fourier sums

Space group (before the ordering), G, f y
The ordering wave vector, k

The symmetry that is compatible with k, the little group G,
The symmetries of G, the irreducible representations

The symmetry of a magnetic moment in a crystal structure, i.e. the position
(permutation representation) and the moment itself (axial vector)
The symmetry of, and within, basis vector spaces

Symmetry of the Hamiltonian



The propagation vector
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k-vector reduces space group symmetry : G,— G,

Constructing G, (the space group of the propagation vector)

— Need only consider the rotational part (h) of symmetry
operation (g):
9= {7}

— a subset of space group Go elements AB,C... that leave the k-
vector invariant G, eG,

e o — s 7‘-’/

Reciprocal lattice vector

— l.e. defines those that are compatible with the translational

symmetry of k
G (@ (E



Space group: G,.
Space group of k-vector: G,

#2227/ k=(000) (I 48
elements

k=(0.5 0 0) (K) 8

k=(0.5 0.5 0.5) (L) |12

* Different points, lines, planes correspond to different
SymmRetsesHllneyavEnavetdiicrent e



The Brillouin zone and different G, e.g. FCC

The symmetry types of the different points in reciprocal space

Different points, lines and planes have different compatible symmetry operations; different G,
(Care with axis system)

Several notations exist, Kovaley, Miller and Love, etc




A

The star of the propagation vector
e.g. k=(0.5 0.5 0.5) in space group Fd-3m,




Back to the space group Go

* (o Is the space group of the crystal structure a set of elements
ABC...

— Group structure of symmetry operations
* the product of 2 elements is a member of the group AeBG
* the product is associative A(BC)=(AB)C
* there exists a unique identity (E)
* every element has a unigque inverse
o« AAT=ATA=E
— Group has irreducible representations

— Gy 1s also a space group



Irreducible Representations of Space Group Gy

Table 1
Irreducible representations of R3c—C63v, k =0 and R3m—C§V,k =0andk = [% -;- -;-]
¢ c3 c3?
\ ! or or or
Symmetry operations ! 3 3? m m3 m3?
Representations
Ty Ay T1 1 1 1 1 1 1
Iy As T2 1 1 l -1 -1 -
Iy E T3 1 ¢ ¢ . 1 ¢ ¢
: 1 ¢ 13 1 . € e
Magnetic moment
transformations
example 1 Six Sz Sy -Say -Sax -83z
example 2 Sxx 833 82)' —Szy "’SZy —533
Sly Ssx Szz ‘52:: "slz ‘53)'
Slz Ssy Sz: ‘523 ‘Sly ‘s3x

« Constructed from the little space group G,

« Character tables are not enough
« Source is important- calculated or tabulated




Summary of lecture
Part |- Recap of group theory and representations

* Why do we need to invoke symmetry?
* Taking representation theory from point groups to crystalline solids

— Translational periodicity
* Increases complexity of the irreducible representations
* Rotation-translation operations
— Representations and irreducible representations (up to 6x6 matrices)

= Goal : starting to think about complex symmetry

Next - Projection - making symmetry adapted functions



Projection of basis vectors : from IRs to BVs

—What are we trying to do?

* Find out what types of structure are possible for moments at
atomic positions

—How?
—Look at these symmetries in turn

* Permutation representation

—How the atoms are interchanged under the symmetry
operations of G

* Axial vector representation
—How the magnetic moments
—are rotated under the
—symmetry operations of G,

—Decompose symmetries using IRs




The permutation representation I'perm

* Recap- a crystal structure is invariant under the symmetry operations

of 1ts point/space group. However, equivalent positions can be
interchanged, permuted

A A— A A—C A— B

/\ 02 ol:B—C o02:B—B 3 :B—=C

B AS xoh=1 x(2)=1 v(37)=0
ol

[ cerm describes how all the atoms are permuted



Symmetry of magnetic moments and
displacement vectors under improper rotations

Ealar

4

Polar vectors are reversed by inversion operation, axial vectors are not.




Symmetry of magnetic moments and
displacement vectors under improper rotations

Polar i
[ Bl e My — My
RDM=[0 1 0] |my|=1[-m,
] m. —
Axial 1 0 0 m. m.,
R(DM =det(h) [0 1T 0] (my | =[m,
0 0 1 m. m.,

det(l) = —1
Polar vectors are reversed by inversion operation, axial vectors are
not. Mathematically, we can deal with this by multiplying by the
determinant



Putting it all together- the magnetic
(displacement) representation

* The permutation representation and the axial vector
representation are independent

1_\m,ag = Fpermuta,tion X Fa,a:ial

* [he magnetic representation can be decomposed into

IRs @i G,
mag Z nz/

« The number of times IR ', appears is given by

Z e (gl hensi (o)

g€G~




Putting it all together- the magnetic
(displacement) representation

« The number of times IR I, appears is given by

Z erag (9)*

g€G~

* This depends on the atomic site and may look like

T oo = TS @ AT @y Gin?

or

B 5 DR iion e



Basis functions

S SyirinEtry aoapiied funcons

with the same symmetry as
the IR-"associated’. Not

unique. Made by projection

¢i>\ s d)\ g *52 ; e—ZWik-(rgi—ri)det h Rh¢
1% 1% g B

ge€Gyk

and a series of test functions, e.g.

é1=(100), ¢p2=(010),¢3=(001)




An example of using “basis functions and exploring basis
vector spaces

“basis vectors
-symmetry types that are adapted to the problem...



A

The Dzyaloshinsky-Moriya effect in
Mn[N(CN),], and Fe[N(CN),], - canted ferromagnets

@ N(1)
O N(2)

e C

Pnnm
A. Lappas et al, Phys.Rev. B 67, 144406 (2003)
AS. Wills and A. Lappas, J. Phys. Chem. Solids 65, 65 (2004)



The Dzyaloshinsky-Moriya effect in
Mn[N(CN),], and Fe[N(CN),], - canted ferromagnets

C.R Kmety et al, Phys. Rev. : : .
B 62 557g (2000)?/ FIG. 11. Configuration of the Mn’* magnetic moments in the

unit cell. The corner and center arrows have same lengths, but they
appear of different lengths due to the perspective view.



Mn[N(CN),], and Fe[N(CN),],

— possible magnetic structures

IR BV Basis vector components
Mia Mip Mic| M2 Maop  M2c
' (R} 0 0 1 0 0 -1
['s 9 1 0 0 1 0 0
U3 0 1 0 0 -1 0
I's Yy 1 0 0 -1 0 0
Y5 0 1 0 0 1 0
' g 0 0 1 0 0 1

Space group Pnnm, k=(000), mI=(0 0 0) and m2=(.5 .5 .5)



Mn[N(CN),], and Fe[N(CN),],
— Linear combinations and possible magnetic structures

IR BV Basis vector components
Mia M1y  Mic| M2a  Mop M2
r'r 0 0 1 0 0 -1
I's o 1 0 0 1 0 0
U3 0 1 0 0 1 0
r (N 1 0 0 -1 0 0
s 0 1 0 0 1 0
'y s 0 0 1 0 0 1
— -
e U =19
- — —
o U = cotpa + 313
— — -
o U =cyips + 595
— —
o U — C@’lﬁﬁ

o Z k Tk —2mik-t;.
mj e CV 1,V € o
vk

» O

—>» b




Mn[N(CN),], and Fe[N(CN),],

IR BV Basis vector components
— possible magnetic structures
I Y1 0 0 1 0 0 -1
I's P2 1 0 0 1 0 0
U3 0 1 0 0 -1 0
I's  Ya 1 0 0 -1 0 0
418l Us 0 1 0 0 1 0
[ Ue 0 0 1 0 0 1

8412 |

8.406 |

Goodne ss-of-fit, X

8.400 |

b 4 / ( - 5
/ 8.394 o)
a 7) 7’) Coefficient, C(y,)

symmetry : 5 and I'c

‘) For D-M interaction to exist, the
: antiferromagnetic and ferromagnetic
components must have the same




Basis vectors

* Define a degree of freedom

— Follows the symmetry of the associated IR
— (Can be used to classify symmetry

* Does not decrease number of degrees of freedom

— l.e. 3 moment degrees of freedom per atom
— n atoms will have 3n basis vectors

— Simplicity from dealing with the categories separately

* Define symmetry as a linear combination, refine in terms of
mixing (weighting) coefficients

m = ZGL@;@



There is real and there is real... m = Z Civi
i

* A purely imaginary basis vector is as real as a purely real one...

77;1 — (17070) 77;2 o (27070)

o = 1.9

— They are equivalent

* The linear combination of basis vectors can be sophisticated, e.g. for basis
vectors related by complex conjugation



Putting it all together

—

G()_k> GE

Csy E C3*|Cs | ov |o/ o)
E E [Cs*|[Cs | ov | O/ |G
e Cst |[Cs | E o/ o | ov
Cs | C3 E [C*|o | oy | o/
oy |ovw |lovw o/ | E | Cs [Cs*
ov o/ |ov [0 |Cst | E | Cs
o lo”lo’ [lo |Cs |Cst | E

“A set of matrices, each corresponding to a single
operation in a group, that can be combined amongst

themselves in a manner parallel to the group

elements.”

(Cotton, Chemical applications of group theory)

Projection of magnetic modes
(basis vectors) associated with the
Irreducible Representations (IRs)

Table 1

Irreducible representations of R3c—C‘3v, k =0and R3m—C§v, k=0andk= [% -% -‘5]

Symmetry operations

Representations

ry Ay Ty
Iy A; Ty
T E T3

(

BASIS VECTOR

) (:

COMPONENTS

FOR EACH SITE

o

c3
or
m3

(NOTE THAT THESE ARE WITH RESPECT TO SPACE GROUP AXES)

IR # 1,
ATOM 1:
ATOM 2:
Wl bew

IR # 3,
ATOM 1:
ATOM 2:

MW hww

IR # 5,
ATOM 1
ATOM 2
IR # 5,
ATOM 1
ATOM 2
IR # 5,
ATOM 1
ATOM 2
IR # 5,
ATOM 1
ATOM 2

BASIS VECTOR:
0
¢ 0

BASIS VECTOR:
¢ 0
¢ 0

BASIS VECTOR:
( 3
( 0
BASIS VECTOR:
( 0
( -3
BASIS VECTOR:
¢ 0
( -3
BASIS VECTOR:
4 3
( 0

*
Q

0

#*
0
Q

WOH OO

wWo R

(=T 3

1 (ABSOLUTE NUMBER:# 1)

6) +
-6) +

i 0 0
i 0 0

1 (ABSOLUTE NUMBER:# 2)
6) + ¢ 0 0
6) 4+ A( 0 0

1 (ABSOLUTE NUMBER.:# 3)
0) + A(-1.732-3.464
0) + i 0 0

2 (ABSOLUTE NUMBER:# 4)
0) + ¢ 0 0
0) 4 A(-1.732 1.732

3 (ABSOLUTE NUMBER:# 5)
0) + ic "] 0
0) 4+ 1( 1.732-1.732

4 (ABSOLUTE NUMBER:# 6
E 0

o)y 4
0) +

i( 1.732 3.4¢
i 0

Q)

0)

0)

0)
0)
Q)

|:|:)

OBTAINED BY CLASSICAL FPROJECTION:



Summary of lecture
Part 2- To atomic moments

* From irreducible representations to basis vectors

— The propagation vector, the Brillouin zone
— From the space group Go to the little group of the propagation vector G,

— Permutation representation

— Axial and polar vectors, representations
— Magnetic representation

— Basis vectors

= Goal :introduce the language for understanding magnetic structures



Landau Theory

* Continuous transitions (2nd order) have rules
— often - only one IR becoming critical
— no third order invariants

e Structure with mixed IRs are possible
* Sequential transitions
* |st order transition

* Higher order contributions in Landau theory, e.g 4th order coupling
terms



Some results of Landau theory

* 3rd order parameters
— Stop the transition being second order

* The'law’ of ordering according to a single IR becoming critical
— A ‘law’ or a starting point?

* (Can a magnetic structure involve more than one IR? * A

_ Yes / ¢1 O¢O dr
 |f it does not introduce 3rd order invariants /
* If there is a coupling term. Remember transition integrals?

— e.g., the coupling could involve a secondary order parameter (mixing coefficients

another IR)

* Still have only a single T,
* Does not drive the symmetry breaking

— Would not break all the symmetry elements that the primary order
parameter does

— Causing the critical parameter to be larger
* Have a smaller amplitude than the primary order parameter

* The coupling creates polynomials in the free energy (typically we work with
order 4)



Landau Theory- When it doesn’t work it might still
be useful :-)

* Irreducible representations still classify symmetry types

* The observation of several IRs involved in a magnetic transrtion
(structure) gives you information about the energy drives

> e eiference between wealdy anad strangly st orcer

@@‘



Couplings and time reversal

* Not all couplings come from Landau theory

* Antiunitary mmetry, e.g. complex conjugation In quantum
mechanics J

* Corepresentation theory (Wigner)
* There are 3 types of co-irreducible representations: a, b,
* 3, are simple
5 gy, Bl Trer 2 eauivelemt IRs
* ¢ bullt from 2 inequivalent IRs, i.e. combine IRs

* Spins are quantum ...



OK, | have data where do | go from here?

Do we know the k vector
— We hope
— Do we know that there is more than one? Maybe...
Carry out representational analysis calculations for each separately
Do we know which IR is primary?
— No, so cycle through IRs until you find it
— At this point freely explore coefficients
Refine moment orientations
— Refine mixing coefficient combinations
— Add basis vectors within IR if they improve fit
Add secondary IR if the fit is improved
— Search through mixing coefficient combinations
Add another k vector if there are peaks that do not line up

» Repeat as needed



Things to keep in mind

* k-vectors in centred cells need to be handled with care, e.g. k=(100) in BCC
— When in doubt, convert to primitive and transform to centred setting

 Representational analysis calculations do not get rid of degrees-of-freedom
— Symmetry is about classifying them
— Deal with only a few variables at a time. More models, each with fewer variables

— Order parameter directions mean even fewer at a time (only a couple may be
active)

* Basis vectors can be complex
— Enjoy what this can make as a structure

— The space that they define shows you what is possible within your unknown
Hamiltonian. Think of the physics you are looking for

e Relate your analysis to other information
— Don't use diffraction in isolation
e Consider the information that is lost

— e.g. by powder or domain averaging



Things to keep in mind

* If you need to couple IRs

— Do 1t consciously. - think about it {)Does this make sense! How does it work with
Landau theory! What can cause it?)

* Are there things that you cannot see?

— e.g. multi k structures.Very cool and we know little about them (because we rarely
think about them)

* Multiple phase transitions and |st order transitions

— ypically Rign meiperaile ones 15 2na erter; tie low emp one 18 st ereer (@ne
involving another IR coming in)

— |st order does not follow Landau theory, but might (mostly). A sliding scale

— Treat the ‘single IR law’ as a reference. Look for where it is broken and think about
what this means!

* Building up magnetic structures

— The Fourier sum can build any magnetlc structure. Just keep adding what you need.

m’ _ch wk —2mik-t

V,k:



Add what you need, when you need it ...
- Building-up the magnetic structure

 Ockham’s razor
— pluralitas non est ponenda sine necessitate ("plurality should
not be posited without necessity”)
— Work out what the necessity is
— Think about why!

— There lies the fun...

— There lies the physics

= Use with symmetry to help define the question ‘why’



Summary of lecture
Part 3 - Phase transitions

Introduction to Landau theory

Continuous phase transitions

Opening the door - a zeroth order approximation
Energy scales - a hand waving approach

Couplings - food for thought

Symmetry and phase transitons

My ‘building-up’ principle

= Goal : Using necessity - Ockham's razor. Necessity is a clear observation that allows

you to ask why it is needed, e.g. single-k, multi-k, single IR, mixed IRs, which BVs



