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Representation analysis vs. Magnetic Groups
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Phase Transition / Symmetry break / Order Parameter

High symmetry group G 1’ = {g;}
Key concept of a symmetry break: order parameter

Distortion in the structure Distortion after application of g,

2
Ji
7 NN Gdoa@

g
< \
—
Q- Q1E+...+Qn_d'n Q= Q’1d1+...+Q’na:,
_p_ ,
Irreducible T(g) Q= _d
representation T(g) : one nxn matrix for each operation g of G
of G (irrep)
(matrices) distortions: Vectors in a multidimensional space




Phase Transition / Symmetry break / Order Parameter

group-subgroup relation:

High symmetry group G =
gh sy 'yg P {g} G == | |F:isotropy subgroup
T(g) 6’: 3 High symmetry | ow symmetry
: For special
Irreducible | / lr directions of
representation g belongs to F i . F of higher
of G (irrep) \ ___________ | symmetry:
(matnces) E == = 0. \\\ epikernels
T(9) Q= Q #Q {| For general
! Q20 direction of
i _ ,,/,? Q, the lowest
g does not belong to F: Q" equivalent |- F: kernel
but distinguishable state (domain)
= '6‘5 OQ 0:5 : amplitude
1

<«—Order parameter Q= (Q,,Q,) = p (a4,a,)
a,%+a,? =1

Key concept of a symmetry break




epikernels
of the irrep,
depending on

isotropy subgroups: N
the direction

. . a,a,...),(a,0,...),
Invariance equation: fatc ) )
;\ _ |2 (R,0[t)is
T[(R,0[t)] b| = |b| —| conserved
by the magnetic .
kernel of the irrep:
nxn matrix of irrep o ) arrangement operations P

represented

by the unit matrix.
MSG kept by any

direction (a,b,...)




Single irrep assignment vs. magnetic space groups (MSG) in
commensurate structures. Cases

1) 1-dim. irrep: irrep and MSG assignment are equivalent for defining the
constraints on the atomic magn. moments



Description in terms of irreps

] Irrep = irreducible representation
Pn’ma’ === one irrep (Irrep P )

Character Table

k=0

2 12 12 |.4/m |m m |4’

z| y| x z| y| x

ana11111111_']

Pn’m’a s
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1
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—
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1
—
-
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1
—
1
—

Pn’lma ¢




Example: parent space group Pnma (Pnma?’)

k=0 8 possible irreps, all 1-dim

One to one correspondence between each irrep and one MSG



Maximal magnetic space groups for the parent space group 62 (Pnma) and the propagation vector k = (0, 0, 0)

Maximal subgroups which allow non-zerc magnetic moments for at least one atom are coloured On |y non-zero

[N [ Group(BNS) [ Transformation matrix _[General positions [Systematic absences [Magnetic structure

moments for

the MSGs associated

with the irreps present in
the magnetic representation

mGM4+

mMGM3+

mGM2+




Filter in k-SUBGROUPSMAG restricting to one or more irreps

Space group of the paramagnetic phase: Pnma (No. 62)
Choose the irreducible representation(s) for each propagation vector
If no Wyckoff position has been given, a general position will be assumed

Non bolded irreps are incompatible with the given Wyckoff positions
Bolded irreps are compatible with at least one given Wyckoff position
Red colored irreps are compatible with all the Wyckoff positions given

Possible magnetic irreducible representations

Propagation wave-vector(s)

GM:(0,0,0)
Descomposition of the magnetic representation(s) into irreps.
4b:(0,0,1/2) — 3xmGM1+(1) @ 3xmGM2+(1) @ 3xmGM3+(1) @ 3xmGM4+(1)

Choose the representation(s)
irreps: mGM1+(1) mGM2+(1) mGM3+(1) mGM4+(1) mGM1-(1) mGM2-(1) mGM3-(1)
Submit

mGM4-(1)



Wyckoff

Multiplicity letter Coordinates
(xyz|m m m) (x+1/2,-y+1/2, z+1/2|-m m m)
Space Group: Y Y
' ' (-x,y+1/2,-z | -m m ~~m )(x+1/2,-y,z+1/2 |m . m ,-m)
Pn'ma 8 g Xy Mz
(-X,y,-z | m my ,m ) (-x+1/2,y+1/2,z+1/2 | -m ,my,mz)
(x,-y+1/2,z | -m,,m,-m ) (x+1/2,y,-z+1/2 | m o My~M )
irrep basis (x1/4,2| 0,m ,0) (x+1/2,1/4,-z+1/2 | O,m ,0)
spin modes 4 ¢ (-x,3/4,-z | O,my,O) (-x+1/2,3/4,z+1/2 | O,my,O)
equwalent (0,0,1/72fm_,m ,m ) (1/2,1/2,0 | -m_,m ,m
to Wyckoff 4 b e —
egn (0,1/2,1/2 | (1/2,0,0§ m_,m ,-m
position X"y
constraints (0,0,0] mx,my,mz) (172,1/2,1/2 | -mx.my,mz)
: @ (0,1/2,0| -m_,m_,-m_) (1/2,0,1/2 | m_,m_,-m_)
Xy z X'y oz

A){node along x

i

Fy mode along y
weak ferromagnet

Gz mode along z

La

Mn



Single irrep assignment vs. magnetic space groups (MSG) in
commensurate structures. Cases

1) 1-dim. irrep: irrep and MSG assignment are equivalent for spin
relations.

It includes the case of 1k-structures witth k#0 and —k equivalent to k, and
the small irrep active being 1-dim



1k magn. structure with -k equiv. to k and small irrep 1-dim: MSG
and irrep assignment equivalent for spin constraints

ErAuGe Paramagnetic symmetry: P6;mc1’

k=(1/2,0,0) (point M in the BZ)
Magnetic phase symmetry: P-.na21 (#33.154)

Label| Atom type X y Z |Symmetry constraints on M | My | My | Mz
c Er Er 0.00000|0.00000(0.25 2my,My,mz 0.0/0.0/8.8 ‘
.. Magndata 1.33

irreps mM.

irrep star: 3 k
dim. extended small irrep: 1

dim. full irrep: 3

One to one correspondence MSG : irrep

However it is convenient to know that the magnetic point group is mm21 ..
and the effective space group for atomic positions in case of

magnetostructural non-negligible effects is: Cmc21



Single irrep assignment vs. magnetic space groups (MSG) in
commensurate structures. Cases

1) 1-dim. irrep: irrep and MSG assignment are equivalent for spin
relations.

2) N dim. irrep, N>1: several MSG (epikernels or isotropy subgroups of the
irrep) are possible for the same irrep. The MSG depends on the way

the spin basis functions are combined. The assignment of a MSG restricts the
magnetic configuration beyond the restrictions coming from the irrep.



Single irrep assignment vs. magnetic space groups (MSG) in
commensurate structures. Cases

1) 1-dim. irrep: irrep and MSG assignment are equivalent for spin
relations.

2) N dim. irrep, N>1: several MSG (epikernels or isotropy subgroups of the
irrep) are possible for the same irrep. The assignment of a MSG restricts the
magnetic configuration beyond the restrictions coming from the irrep.

case 2.1: The MSG is a k-maximal subgroup: it only allows a spin
ordering according to a single irrep (further restricted to fulfill the
MSG constraints). No other irrep arrangements are compatible with

the MSG.
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K-SUBGROUPSMAG: maximal subgroups



Maximal magnetic space groups for the parent space group 136 (P4,/mnm) and the propagation vector k = (0, 0, 0)

Maximal subgroups which allow non-zero magnetic moments for at least one atom are coloured

P45/m'n'm (#136.500)

Go to a subgroup

1 0
0 1
0 0

(

Alternatives (domain-related)

Systematic absences
MAGNEXT

Tensor properties
MTENSOR

Systematic absences

Alternatives (domain-related)

0
0
0

)

Alternatives (domain-related)

Alternatives (domain-related)

( )

1 0 o 0
0o 1 0 0
o o0 1 0

-

Alternatives (domain-related)

1 0 0 o0
Pd/mn'm (#136.498) ( SR g) Show MAGNEXT chow
Go to a subgroup Tensor properties
Alternatives (domain-related) MTENSOR
1 0 o0 0 Systematic absences
7 | P4ymnm #136.497) ( 2 5 % 3) Show MAGNEXT o
Go to a subgroup Tensor properties
Alternatives (domain-related) MTENSOR
1 0 o 0 Systematic absences
8 | P4o/mnm (#136.495) ( 5 o g) show MAGNEXT -
Go to a subgroup Tensor properties
MTENSOR

MAXMAGN

or

MAGMODELIZE




BNS:Cmm 'm '
k1=0,0,0

7/

—_——
cor
orc
~roc
coc

S——

e oo,
MAGNEXT
Show . Show
Tensor properties
MTENSOR
__Show |
= s

Cr1_1 (mx,-mx,0)
Cr1_2 (mx’,-mx’,0)

MAGNEXT
MTENSOR
MAGNEXT
MTENSOR

BNS:Cm 'mm
k1=0,0,0

1 0 0
0 1 0
0 0 1

Alternatives (domain-related)

Two spin parameters to be fit




BNS:Pnn 'm '
k1=0,0,0

—yTtviaue wruvr oo

MAGNEXT

Tensor properties ° *

MTENSOR

8 || P4y/mnm (#136.495)
Go to a subgroup

Cr1_1 (mx,my,0)

P
“~ =g
Only ONE independent magnetic site. But two
independent spin components. -~ —Q—
Spin canting symmetry allowed

Two spin parameters to be fit



k-SUBGROUPSMAG: filter by irreps
Irrep mGM5+ : Irrep mGM5-:

2 d.f.
2 basis f.

2 d.f.

2 d.f. .
2 basis f. 2 pasist.

2 d.f.
2 basis f.

P2'/m’ |4 degrees of freed. P2 /m 4 degrees of freed.
4 basis functions 4 basis functions

Invariance equation:

possible MSGs

TIR, e|t —| REIbs depending on the
by the magnetic direction of the
2x2 matrlx of irrep arrangement order parameter (a,b)




epikernels
of the irrep,
depending on

isotropy subgroups: N
the direction

Invariance equation: (a,a),(a,0), etc...

(R,0[t)is
T[(R, Glt |:] U —>| conserved
by the magnetic

arrangement kernel of the irrep:

operations
represented

2x2 matrlx of irrep

by the unit matrix.
MSG kept by any

direction (a,b)




Programs that determine the epikernels and kernel of any irrep, and
produce magnetic structural models complying with them.

Program for mode analysis:
ISODISTORT http://stokes.byu.edu/iso/isotropy.php  Stokes & Campbell, Provo

Version 6.1.8, November 2014
Harold T. Stokes. Branton J. Campbell, and Dorian M. Hatch, Department of Physics and Astronomy, Brigham Young University, Provo, Utah, 84602, USA,
stokesh@byu.edu

Description: ISODISTORT is a tool for exploring the structural distortion modes of crystalline materials. It provides a user-friendly interface to many of the
algorithms used by the Isotropy Software Suite, allowing one to generate and explore distortion modes induced by irreducible representations of the
parent space-group symmetry. It also provides a Java applet for visualizing and interactively manipulating the free parameters associated with these modes.

Help, Tutorials, Version History

NOTICE: Version 6.1 is a major new release. We appreciate your bug reports -- please send relevant input files along with the html page showing the failed
output.

Legacy copy of ISODISTORT version 5.6.1, August 2013 Both programs also support incommensurate
cases, deriving epikernels and kernel of the irreps
in the form of MSSGs, and corresponding
magnetic models

Begin by entering the structure of parent phase: @

Get started quickly with a cubic perovskite parent.

Import parent structure from a CIF structure file: m Browse... | No file selected.

Program for structure refinement:

Institute of Physics  http://jana.fzu.cz/ V/, Petricek, Prague

Departmer?t of Structure Analysis Academy of Sciences | Institute of Physics
Cukrovarnicka 10 Dept of Structure Analysis | Laboratory of Crystallography
16253 Praha 6 ECA-SIG#3 | Contact Us

Czech Republic

CRYSTALLOGRAPHIC COMPUTING SYSTEM FOR STANDARD AND MODULATED STRUCTURES

Vaclav Petricek, Michal Dusek & Lukas Palatinus

News ﬂ

lmsmssmuns MDA ANAE ADEDIANIAANALE. Alateant avhmainain; Adasdli;a 2N A wsil



HoMnO3 (Mufoz et al. Inorg. Chem. 2001)

diffraction peaks: Gp=Pnma
propagation vector k=(1/2 0 0) : point X
magn.
¥ @ Y ® \/ ® /
c* . .
irrep point group
N a* - - -
P,nm2, mm21’
mX,
|P.2,/m 12/m11’
Pnmal'
1 Panazl mm21
mX,
* (111200} | Ps2,/a 12/m11
< 23 > Equivalent to a lattice
translation for the positions

1' belongs to the point group

symmetry operation kept: {1'|11/20 0} — of the magnetic phase



Space group: Pnma
propagation vector k=(1/2 0 0) (point X)

Pa21/m

mX,

P021/c

P,2,

P,m

Pnmal’

HoMn

Pymn2q

mX,

Pana21

P2,

Pbc

NS

Ps1




Single irrep assignment vs. magnetic space groups (MSG) in
commensurate structures. Cases

1) 1-dim. irrep: irrep and MSG assignment are equivalent for spin
relations.

2) N dim. irrep, N>1: several MSG (epikernels or isotropy subgroups) are
possible for the same irrep. The assignment of a MSG restricts the magnetic
configuration beyond the restrictions coming from the irrep.

case 2.1: The MSG is a k-maximal subgroup: it only allows a spin
ordering according to a single irrep (further restricted to fulfill the MSG
constraints). No other irrep arrangements are compatible with the MSG.

case 2.2: The MSG is NOT a k-maximal subgroup: it allows the presence of
other irreps (secondary). Other irreps are compatible with the MSG. (for
simple propagation vectors (2k=reciprocal lattice) not frequent)



NiO Parent space group: Fm-3m
k= (1/2,1/2,1/2) — point L in the BZ

MSG: C 2/c

My;=m(1,1,-2)

(a/4+b/d-c/2,a/4-b/4,-a/2-b/2;0,0,0)



N IO parent space group: Fm-3m
k= (1/2,1/2,1/2) — point L in the BZ Ni site 4a (0,0,0)
little group of k: R-3m

M= mL2+ + mL3+
1-dim 2-dim

Relation between the irrep description and the one using
a MSG in the case NiO (exercise 13)

Use k-SUBGROUPSMAG to obtain for the possible active irreps the
possible resulting magnetic symmetries.



Fm3ml’

R3¢ R3¢ Ri3m Ri3m
Ce2/c R3¢ R;32 R;3 Ce2/c R;3 R;32 Cc2/m Cc2/m Ri3m
X —
\ 4
Cuc C.2 Pl B3 Psl C.2 Com
Ps1

magnetic site 4a




M., (site 4a )= mL2+ + mL3+

(a,a)

Ps1

1-dim

mL3+

(a,0)

(a,b)

2-dim

mL3+ (a,a)

Ps1

ee L

magnetic site 4a

mL3+ (a,0)

mL3+ (a,b)

mL2+



(obtained with
k-SUBGROUPSMAG)

magnetic site 4a

NIO parent space group: Fm-3m
k= (1/2,1/2,1/2) — point L in the BZ mL2+

little group of k: R-3m
mL3+ (a,0)

mL3+ (a,a)
M_=mL2+ + mL3+ Ce2/e

rep
1-dim 2-dim \
"1 ImL3+ (a,b)

Table 5 Epikernels and kernels of some magnetic #veps of Fm3m1’ at the L point® of the Brillouin zone

Order
parameter Magnetic space Spin degrees of Ni spin basis
Irrepg direction group Transformation to standard freedomP modes
ml2+ (@) Ri3c (#167.108) (—ap/2 4+ ¢p/2,bp/2 — ¢p/2, 1 (1,1, 1)
—2a, — 2b, — 2¢; 0, 0, 0)
(a, 0) C.2/m (#12.63) (ap/2 + bp/2 — ¢, ap/2 — by/2, 1 (1, —1,0)
—a, — bp; 0,0, 0)
mlL3+ (a, a) C.2/c (#15.90) (@p/2 + byp/2 — ¢, ap/2 — by/2, | (1,1,=2)
—a, — bp', 0,0,0)
(a, b) Ps1 (#7.28) (=bp/2 + ¢p/2, ag/2 — by/2, a, 2 (1,—1,0)
+ ¢p; 0,0, 0) (1,1, -2)

(obtained with ISODISTORT)



Possible alternative model for NiO of maximal symmetry for the same
irrep mL3+ (exercise 14)

symmetry realized
mL3+ (a,a) 3+(a,0)

alternative symmetry
for the same irrep

Using k-SUBGROUPSMAG and MAGMODELIZE obtain an mcif file
of the alternative model for NiO with symmetry C_2/m, which can result
if the irrep mL3+ is the active one and visualize it. (file required:

6.NiO_parent.cif).



Ca,LiOsOq

A TA

(Calder et al PRB 2012)

Paramagnetic symmetry: R-3c1 1’

C2’/c’

(monoclinic axis along x )

Magnetic space group of magnetic phase:

A
gﬁo\vﬂb\!
*"\W\J L",{

» £

Label | Atom type

X

y z

Symmetry constraints on M Mx

My

Os Os

0.00000

0.00000/|0.00000 My,My,Mz

2.20000

0.000000|0.00000

Magndata 0.3

Predicted to be weak ferromagnet along z and
along (1,2,0), (perp. to the monoclinic axes)

They can be non-zero. They are symmetry-
forced to be equal for all atoms.

Atom X y z Symmetry constraints on M Mx My Mz
1 (0.66667|0.333330.33333 My,My,Mz 2.20000 (0.00000(0.00000
2 0.33333/0.66667 |0.66667 My,My,Mz 2.20000 |0.00000(0.00000
3 0.00000|0.000000.00000 Mx,My,Mz 2.20000 |0.00000(0.00000
4 |0.00000/0.00000/0.50000 -My+My,My,Mz -2.20000 (0.00000 (0.00000
5 0.33333/0.66667|0.16667 -Mx+My,My,Mz -2.20000 (0.00000 (0.00000
6 |0.66667/0.33333|0.83333 -My+My,My,Mz -2.20000 (0.00000 (0.00000




Our example: Ca;Li0sOq — — _
Specific combinations of the irrep

Isotropy subgroups (kernel and epikerrw basis modes (from Basirreps, for
instance)

i +
;g_?l)mn:gx)? Especial directions 1: C2/c \
|R-3¢1’] > -1
Especial directions 2: | CZ’/C’ kernel: common to any mGM3+ ordering

™~

Invariance equation:

’ a (R,0[t)is
mon ,
ymo” [(R Blt U 3 conserved
by the magnetic
2x2 matrlx of irrep mGM3+ arrangement

Isotropy subgroups (kernel and epikernels) are derived by programs as:
ISODISTORT or JANA2006



|R-3c1’|

Possible different magnetic space groups for the same irrep

irrep mGM3+

w=ei2n/3

K=0

All lattice translations:

11T}

10
01

For any phase o of the order parameter Q. symmetry operations {1|000} and {-1|000}

plus the lattice are coserved

If a=0,7 {2,,/000} and {m,,|000}

If a=2m/3,-21/6 {2,000} and {m,|000}
If a=-21/3,2m/6 {2,000} and {m,|000}

C2/c

If a=/2,-m/2 {2',,|000} and {m’,,|000}
If a=-51/6,1/6 {2’ |000} and {m’,|000}
If a=-1/6, 5/6 {2',|000} and {m’,|000}
C2’/c’

{11000} | {3+|000} | {3-]000} | {2, {2,1001/2} | {2,,1001/2}
{-1]000} | {-3+/000} | {-3-]000} | 001/2{m,| |{m,]001/2} | {m,,|001/2}
001/2}

10 w0 w* 0 0ow* O w 01

01 0 w* 0w w (0 w* 0 10

{1000} | {3'+|000} |{3-|000} |{2'J001/2} |{2’J001/2} |{2,1001/2} [~
{-11000} | {-3'+|000} | {-3-|000} | {m’J001/2} | {m’,|001/2} | {m’,,|001/2}
-10 -w 0 -w* 0 0 -w* 0 -w 0 -1

0 -1 0 -w* 0 -w -w 0 -w* 0 -10

Q=(S,S*) Q= pei©




Basirreps output

Magnetic representation: mGM1* + mGM2* + 2mGM3*

+++++++ AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR
=> Basis functions of Representation IRrep{ 6) of dimension 2 contained 2 times in GAHMHMA

+++++ 4+ H AR AR AR AR AR AR AR AR AR ++++++++ AR AR AR AR AR AR AR
SYMM x,y,z y,x,-z+1/2 mGM3*
Atoms: 0s_1 0s_2

BsU( 1, 1: 2):Re { 1 8 08 ( 8 0 0

Im (-0.58-1.15 0.68) ( 06.60 0.00 0.00)
BsU({ 2, 1: 2):Re ( 5] 5] a) ( 5] 1 a)
-l B Set-dhet=L S ek 4 basis functions: 4 parameters

(
(
Im ( 6.60 8.60 8.680) (-1.15-06.58 0.060)
(
(

BsU{ 4, 1: 2):Re 1 () 8) ( ) 8 8)
Im 0.58 1.15 06.00) ( 6.00 6.60 0.008)
————— The Fourier coefficients are LINEAR COMBINATIONS of Basis Functions: coefficients u,v,w,p,q ....{may be complex?)

The general expressions of the Fourier coefficients Sk{j) of the atoms non-related
by lattice translations are the following:

SYMH x,y,z Atom: 0s_1 0.0000 0.0000 0.0000
SK(1): (u+p,0,8)+i.{(-rB.u+rB.p,-r1.u+r1.p,0)

SYMH y,x,-z+1/2 Atom: 0s_2 0.0000 0.0008 06.5000
Sk{2): (8,u+u,B8)+i.(r1.v-r1.uw,r8.v-r8.u,0)

Ualues of real constants r@,r1,...
re = 8.577350 r1 = 1.1547008



Sarah output Transformation to basis functions

mGM3*irrep
IR # 6, BASIS VECTOR: # 1 (ABSOLUTE NUMBER:# 3)
ATOM 1. ( 6 0 0) + i( 0 0 0)
ATOM 2: ( 0 0 0) + i( 0 0 0)

IR # 6, BASIS VECTOR: # 2 (ABSOLUTE NUMBER:# 4) . .

ATOM 1: ( 0 0 0) + i¢ 0 0 0) |4 basis functions: 4 parameters
ATOM 2: ( 0 6 0) + ic( 0 0 0)

IR # 6, BASIS VECTOR: # 3 (ABSOLUTE NUMBER:# 5)

ATOM 1. ( 0 0 0) + ic( 0 0 0)

ATOM 2: ( 6.928 3.464 0) + i( 0 0 0)

IR # 6, BASIS VECTOR: # 4 (ABSOLUTE NUMBER:# 6)

ATOM 1: (-3.464-6.928 0) + 1ic( 0 0 0)

ATOM 2: ( 0 0 0) + i( 0 0 0)



For multidimensiona irreps, assigning an irrep is NOT equivalent to the
assigning of a magnetic space group:

Our example: Ca3LiOsO6
irrep mGM3+ C2/c

| R-3c?1’ | /7 Magnetic symmetry is MORE restrictive than
— | C2’/c’ | assigning an irrep...

Label |Atom type X y z Symmetry constraints on M
Os Os 0.00000/0.00000/0.00000 My, My, Mz

3 parameters




Space group: R-3c
propagation vector k=(0 0 0) (GM point)

R3cl’

mGM1+ m§M2_+ mGM2- mGM1-
R3c R3¢ R3¢ R3¢ mGM3-
}m& -
C2/e R3 R3c R32 c2/d R3? C2/c R3¢ C2/d Ry
O —
Ca,LiOs
7S
Pl Ce C2 R3 cY o pT'
/

P1



Magnetic symmetry is MORE restrictive than
assigning an irrep...

BUT also LESS restrictive than assigning an irrep !:

Irrep mGM3+ restricts the spins to the xy plane (R-setting), but the magnetic group C2’/c’

allows a FM component along z.

GM3+, displacive modes
(magneto-structural coupling)

R-3c1’

(strain) C2/ct’

RA-3C,

C2’Ic’

mGM2+, FM spins along z
1 parameter (mz)

mGM3+, special combination of irrep basis modes)

(special direction of the OP)

2 parameters (mx,my)



The same symmetry change as in

canting

canting

R-3c?’ classical weak ferromagnets NiCO,,
GM3+, displacive modes CoCO,;, MNCO,
(magneto-structural coupling)
C2/cT’ R-3C’ | mGM2+, FM spins along z
C2’[c’ mGM3+, special combination of irrep basis modes)
(special direction of the OP)
atom X,¥,Z moment restrictions
mGM3+ distortion restricted to C2’/c’ symmetry: | 0s 0,0,0 mx,my,0
(2 parameters)
FM
mGM2+ distortion (R-3¢c’ symmetry): atom X,Y,Z moment restrictions
(1 parameter) Os 0,0,0 0,0,mz
‘s“Fhﬂ
C2’/c’ symmetry (all Label |Atom type X y z Symmetry constraints on M
compatible irreps _5, | Os Os |0.00000|0.00000|0.00000 My,My,M;
allowed)
I Myx My M:
2.20000/0.000000|0.00000




Why an MSG may allow the presence of secondary irreps?

....because the symmetry of the primary magnetic ordering
allows adequate couplings which can induce their appearance without
any additional symmetry break.

No need to make a book keeping of these possible couplings... The
MSG does it for us!:

All irrep modes compatible with the MSG have adequate couplings
with the primary order parameter to allow their non-zero value.

One can always find a symmetry-consistent microscopic
mechanism explaining its existence as an induced effect
( Dzyaloshinski-Moriya...)




Symmetry-allowed coupling inducing weak FM along z (mGM2+)

{1|000} {3+|000} | {3-]000} 2 {2,J001/2} | {2,,1001/2}
Q=(S S*) {-1/000} | {-3+|000} | {-3-|000} | 001/2{m, | {m,001/2} | {m,,|001/2}
’ ' 001/2}
S=pe'* |10 w0 w* 0 0w 0w 01 mGM3+
83 8*3 01 0 w* 0w w0 w* 0 10 GM1+
+ m
( ) 1 1 1 1 1
3_Q*3
(S°-S*9) 1 1 1 1 1 Py mGM2+
{11000} | {3'+|000} | {3-]000} | {2,]001/2} | {2,J001/2} | {2,l001/2}
{-11000} | {-3+]000} | {-3-|000} | {m’J0O1/2} | {m’J001/2} | {m’,|001/2}
-10 -w 0 -w* 0 0 -w* 0 -w 0 -1 +
0-1 0 -w* 0 -w -w 0 -w* 0 -10 mGM3
S3+8*3) | -1 -1 -1 -1 -1 -1 mGM1+
S3-5*3) i i i
1 1 1 1 1 1 mGM2+
Allowed energetical coupling terms:
S,;: mGM1+ (S3+S*3)S,= p3cos (3a) S, —> S, = p3cos (30)
S,: mGM2+ (S3-S*3)S,= p3sin (3a) S .
C2’/c’: S1 =0 , Sz o p3 C2/c: S1 o p3 , Sz =0
o=NT/3+1/2 mGM2+ o=nm/3 mGM1+

S, = FM component along z



Single irrep assignment vs. magnetic space groups (MSG) in
commensurate structures. Cases

1) 1-dim. irrep: irrep and MSG assignment are equivalent for spin
relations.

2) N dim. irrep, N>1: several MSG (epikernels or isotropy subgroups) are
possible for the same irrep. The assignment of a MSG restricts the magnetic
configuration beyond the restrictions coming from the irrep.

case 2.1: The MSG is a k-maximal subgroup: it only allows a spin
ordering according to a single irrep (further restricted to fulfill the MSG
relations). No other irrep arrangements are compatible with the MSG.

case 2.2: The symmetry allows the presence of other secondary irreps.
Other irrep arrangements are compatible with the MSG.

Exceptionally: two different irreps may have the same MSG as epikernel....



Conclusions:

* Properties of magnetic phases are constrained by their magnetic
symmetry: a magnetic space group (if commensurate) or superspace
group (if incommensurate)

- Whatever method one has employed to determine a magnetic
structure, the final model should include its magnetic symmetry.

* Representation analysis of magnetic structures is NOT in general
equivalent to the use of magnetic symmetry (i.e. to give an irrep is
not equivalent to give the magnetic space (superspace) group of
the system)

» The best approach: to combine both representation analysis and
magnetic symmetry
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