

An Introduction to Magnetic Structures -Working with the propagation vector (Crystalline Solids)

Andrew S. Wills UCL Chemistry

Why use symmetry?

- Electronic properties and structures are complex
 - Magnetism is the spin-dependent part
- Never as much information about them as we would like
 - Experimentalists typically deal with under-defined problems (there are too many possible solutions)
 - Symmetry is useful to introduce a grand simplifying structure (makes rules followed and broken, classes of behaviour, and thus to simplify, clarify and reveal...)

≜UCL

Overview of today

- Why do we need to invoke symmetry?
- Taking symmetry theory from point groups to magnetic structures
 - Translational periodicity
 - Increases complexity of the irreducible representations
 - Rotation-translation operations
 - The propagation vector, the k-vector

• A more sophisticated language

- The little group of the propagation vector G_k
- Permutation representation
- Axial and polar vectors, representations
- Magnetic representation
- Basis vectors
- Couplings Time reversal and Landau theory
- Symmetries and frameworks
 - Representations and irreducible representations
 - Magnetic space groups (time reversal)
- Gives the language for understanding magnetic structures, for posing questions

Overview of today

- Phase transitions

• Introduction to Landau theory

- Continuous phase transitions
- Opening the door a zeroth order approximation

AUCL

- Energy scales a hand waving approach
- Couplings food for thought
- Symmetry and phase transitons
- My 'building-up' principle
 - Working with necessity Ockham's razor

Overview of this lecture

- -Working with the propagation vector
- Using the symmetry language
 - Away from a shaken box \rightarrow Frameworks and information
 - Reveal what magnetic structures are
 - Building up descriptions to make the range of possible magnetic structures
 - Pulling together the different symmetry ideas together within representation theory
 - →Using the language to build up some structures

Why should an experimentalist use symmetry?

UCL

-Never enough information...

- Magnetic structures are complex
- Information is destroyed in many ways
- The magnetic form factor: $J(\mathbf{Q})$
- The magnetic structure factor: $\mathbf{F}_{\mathrm{M}\perp}(\mathbf{Q})$
- Powder averaging
- Domain averaging (powder, single crystal)

<u><u></u>UCL</u>

Why should an experimentalist use symmetry? -Never enough information...

- Magnetic structures are complex
- Information is destroyed in many ways
- The magnetic form factor: J(Q)
- The magnetic structure factor: $F_{M\perp}(Q)$
- Powder averaging
- Domain averaging (powder, single crystal)

Why should an experimentalist use symmetry? -Never enough information...

- Magnetic structures are complex
- Information is destroyed in many ways
- The magnetic form factor: $J(\mathbf{Q})$
- The magnetic structure factor: $F_{\text{M}\perp}(\mathbf{Q})$
- Powder averaging
- Domain averaging (powder, single crystal)

Why should an experimentalist use symmetry? -Never enough information...

- Magnetic structures are complex
- Information is destroyed in many ways
- The magnetic form factor: $J(\mathbf{Q})$
- The magnetic structure factor: $F_{\text{M}\perp}(Q)$
- Powder averaging
- Domain averaging (powder, single crystal)
 - \rightarrow Under-defined problem
 - \rightarrow Hidden (unconsidered) possibilities

UCL

Definition of magnetic structures, phonons, electronic orbitals

- A linear combination of plane waves (basis vectors, Fourier components)
- Bloch waves Eigenfunctions of a periodic Hamiltonian can be constructed from Fourier components

$$\begin{split} \vec{\psi}_{j,\nu}^{\vec{k}} &= \vec{\psi}_{i,\nu}^{\vec{k}} \ e^{-2\pi i \vec{k} \cdot \vec{t}_{ij}} \\ \vec{m}_j &= \sum_{\mathcal{V}; \vec{k}} C_{\nu}^{\vec{k}} \ \vec{\psi}_{i,\nu}^{\vec{k}} \ e^{-2\pi i \vec{k} \cdot \vec{t}_{ij}} \end{split}$$

Once the moments in the primitive unit cell are defined, the k vector defines every other spin in the structure

What a magnetic structure (Néel state) is

- An ordered configuration of magnetic moments with a long correlation length
 - The order has some translational symmetry (the moments in different unit cells - related by primitive lattice vectors - are related)
- The orientations of the moments are related by symmetry (what happens in detail depends on where the moments are in the system and the host crystal structure)

What a magnetic structure isn't

• A haphazard set of arrows (moments) in a box (crystal structure)

- This could fail to have the translational symmetry relating moments in different unit cells (<u>careful with centred cells</u>!!!)
- Magnetic structures are pretty well misunderstood and papers giving nonsensical structures an frequent problem...
- There are <u>rules</u>...
 - But they are open ended...

[±]UCL

What different types of structures are possible?

- Lots:
 - Simple ferromagnetic structures (identical moments that align parallel)
 - Simple antiferromagnetic and ferrimagnetic structures (neighbouring moments align antiparallel)
 - Complex antiferromagnetic structures
 - Commensurate
 - Incommensurate (sine waves or spin density waves, helices, etc)
 - Open ended \rightarrow Mixtures

Magnetic structures

- k-vector :
 - Propagate (a component of) the magnetic structure through the crystal
 - Define translational periodicity and orientation dependence

- basis vectors
 - Build up symmetry within primitive unit cell of G_0

$$\vec{m}_{j} = \sum_{\nu, \vec{k}} C_{\nu}^{\vec{k}} \; \vec{\psi}_{i,\nu}^{\vec{k}} \; e^{-2\pi i \vec{k} \cdot \vec{t}_{ij}}$$

How can magnetic structures be described

- Simple moments and unit cells?

- People like to think in terms of $\boldsymbol{m}_{\parallel x'} \boldsymbol{m}_{\parallel y'} \boldsymbol{m}_{\parallel z}$ Don't!
- Begin with $m_{\parallel a}, m_{\parallel b}, m_{\parallel c}$ (the components along parallel to the crystal axes)
 - This description is intuitive
 - Best used to describe the final structure, not to refine it
 - Instead use functions that are symmetry adapted to the system you are dealing with, these will allow more complex symmetries
- People like to use unit cells (magnetic space groups)
 - This description is intuitive
 - The description of a magnetic structure within MSG framework is equivalent to using representation analysis it has to be
 - Beauty is in the eye of the beholder.
 - Both MSGs and representation theory need to be treated with care. Couplings are treated differently, elegance of describing a structure depends on what you want and your preferred point of reference.

How can magnetic structures be described -an alternative approach

- Origins
 - The eigenfunctions of an electrons with a periodic Hamiltonian are Bloch waves.

with the form:
$$\vec{m}_j = \sum_{\nu,\vec{k}} C_\nu^{\vec{k}} \; \vec{\psi}_{i,\nu}^{\vec{k}} \; e^{-2\pi i \vec{k} \cdot \vec{t}_{ij}}$$

– Magnetic structures are eigenfunctions of the spin-dependent electronic Hamiltonian and have the same form

– If we expand the exponential, we see that it is made up of a ${\bf Re}{\sf al}$ cosine part and an ${\bf Im}{\sf ag}{\sf inary}$ sine part

$$\vec{m}_{j} = \sum_{\nu,\vec{k}} C_{\nu}^{\vec{k}} \, \vec{\Psi}_{i,\nu}^{\vec{k}} \left[\cos(-2\pi\vec{k}\cdot\vec{t}) + i\,\sin(-2\pi\vec{k}\cdot\vec{t}) \right]$$

• This formalism very general and we will see that it can describe simple and exotic structures, such as sinusoidal and helical structures

Basis vectors and k-vectors

- Simple structures and 'sine or cosine' structures
 - The translational properties of a magnetic structure may be described by

$$\vec{m}_{j} = \sum_{\nu,\vec{k}} C_{\nu}^{\vec{k}} \ \vec{\psi}_{i,\nu}^{\vec{k}} \ e^{-2\pi i \vec{k} \cdot \vec{t}_{ij}}$$

 Working with only one basis vector, ignoring the coefficient for simplicity and expanding the exponential, this becomes

$$\vec{m}_j = \vec{\psi}_{i,\nu}^{\vec{k}} \left[\cos(-2\pi \vec{k} \cdot \vec{t}_{ij}) + i \, \sin(-2\pi \vec{k} \cdot \vec{t}_{ij}) \right]$$

- If $\vec{\psi}$ is real and the propagation vector is such that the sine part is zero, e.g components 0 and 1/2
 - Left with a simple cosine curve with the moments of the same amplitude.

A simple (cosine) structure

Basis vectors and k-vectors

• Ψ is <u>real</u> and k is such that the sine component is non-zero

- Leads to \boldsymbol{m}_{i} being complex, so need to make it real
- The moment vector for an atom in the *n*th cell related to that in the zeroth cell by translation \mathbf{t}_{ij} is given by

$$m_{j} = C_{\nu}^{k} \psi_{i,\nu}^{k} e^{-2\pi i k \cdot t_{ij}} + C_{\nu}^{k} \psi_{i,\nu}^{-k} e^{-2\pi i (-k) \cdot t_{ij}}$$
$$m_{j} = C_{\nu}^{k} \psi_{i,\nu}^{k} e^{-2\pi i k \cdot t_{ij}} + C_{\nu}^{k} (\psi_{i,\nu}^{k})^{*} e^{-2\pi i (-k) \cdot t_{ij}}$$

-As

$$\psi_{i,\nu}^{-k} = \psi_{i,\nu}^{k,*}$$

- Substitution and expansion of the exponential leads to

$$\vec{m}_j = 2Re(\vec{\psi}_{i,\nu}^{\vec{k}}) \left[\cos(-2\pi \vec{k} \cdot \vec{t}_{ij}) \right] + 2Im(\vec{\psi}_{i,\nu}^{\vec{k}}) \left[\sin(-2\pi \vec{k} \cdot \vec{t}_{ij}) \right]$$

– Where the second term is zero as Ψ is real \rightarrow Amplitude modulated sine structure (spin density wave)

Basis vectors and k-vectors

• Ψ is <u>complex</u> and k is incommensurate

- Leads to **m** being complex, so need to make real moments
- $-\,$ The atomic vector for an atom in the nth cell related to that in the zeroth cell by translation t is given by

$$m_{i} = C_{\nu}^{k} \psi_{i,\nu}^{k} e^{-2\pi i k \cdot t_{ij}} + C_{\nu}^{k} (\psi_{i,\nu}^{k})^{*} e^{-2\pi i (-k) \cdot t_{ij}}$$

- Substitution and expansion of the exponential leads to

$$\vec{m}_j = 2Re(\vec{\psi}_{i,\nu}^{\vec{k}}) \left[\cos(-2\pi\vec{k}\cdot\vec{t}_{ij}) \right] + 2Im(\vec{\psi}_{i,\nu}^{\vec{k}}) \left[\sin(-2\pi\vec{k}\cdot\vec{t}_{ij}) \right]$$

- Where the second term is non-zero.
- If the real and imaginary parts are not parallel \rightarrow circular or elliptical helix

Building structures : basis vectors and k-vectors

• A circular helix

- **k** incommensurate (or sine part is non-zero)
 - Ψ has is complex, and has non-collinear real and imaginary components (equal magnitude) in a plane that does not contain k

• A conical structure

- **k** incommensurate (or sine part is non-zero)
 - Ψ has is complex, and has non-collinear real and imaginary components (equal magnitude) in a plane that does not contain k
- **k**=(000)
 - Ψ is ferromagnetic and is perpendicular to the helix

A cycloid

- **k** incommensurate (or sine part is non-zero)
 - Ψ has is complex, and has non-collinear real and imaginary components (equal magnitude) in a plane that contains k

UCL

Practice making some magnetic structures

30

<u><u></u>UCL</u>

Several notations exist, <u>Kovalev</u>, Miller and Love, etc

But what about unseen complexity?

• Types of domain (characterised by the types of symmetry elements lost during the magnetic ordering)

Configurational (k) domains	(translational symmetry)
Pi domains	(time reversal)
Orientational (S) domains	(rotational symmetry)
Chiral domains	Centrosymmetry
32	

Configurational domains (k domains)

- Arise if $G_k <> G_0$
 - Operating with the paramagnetic symmetry elements on \boldsymbol{k} generates a set of inequivalent vectors which form the star of \mathbf{k} , e.g. $k_1 = k_1 E$, $k_2 = k_1 R_2$, $k_3 = k_1 R_3$, $k_4 = k_1 R_4$...
 - e.g. FCC lattice

Configurational domains (k domains)

- Each vector in the star generates a different (equivalent) configuration domain
- Each configuration domain gives a completely separate set of magnetic reflections at positions $\pm k$ from the reciprocal lattice nodes

UCL

- Each set of reflections belongs to a distinct region of the crystal, hence effectively to a single state

π - domains (time reversal)

- Regions in which all the moment directions in one domain are reversed with respect to those in the other
- The two domains are related by the time inversion operator
- Ferromagnetic domains provide a simple example
- The intensity and the polarisation scattered by the two domains are identical

Slip and translational domains

 Regions in which all the moment directions in one domain are related to another by translational symmetry

UCL

 The intensity and the polarisation scattered by the two domains are identical

Orientational domains (S-domains)

- Occurs when the symmetry of the magnetic structure is less than that of the crystal space group
- S domains are related by the symmetry elements that are lost (*k* does not change)
- The relationship between \boldsymbol{m} and \boldsymbol{k} is the same for all \boldsymbol{s} domains
- Distinguish by single crystal diffraction, not powder diffraction

Chiral domains

- Occurs when
 - Paramagnetic space group is centrosymmetric but the magnetic structure is not

- The magnetic moments on centrosymmetrically related sites are not parallel
- Incommensurate structures
 - when 2k is not a reciprocal lattice vector so the configurational group is acentric
 - In this case the two chirality domains correspond to +k and -k. They both give contributions at (hkl) ± k

⁺UCL

Thinking about unseen complexity

- Fourier description of magnetic structures
 - Each single domain follows

$$m_j^{\vec{k}} = \sum_{\nu, \vec{k}} C_{\nu}^{\vec{k}} \ \psi_{\nu}^{\vec{k}} \ e^{-2\pi i \vec{k} \cdot}$$

- In the absence of unbalancing constaints (applied magnetic or electric field, pressure, etc) these will have the same energy
- Leads to questions
 - are there S-domains
 - multi-k or k-domain?

39

