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Why use symmetry?

• Electronic properties and structures are complex 

• Magnetism is the spin-dependent part

• Never as much information about them as we would like 

– Experimentalists typically deal with under-defined problems (there are too many 
possible solutions)

– Symmetry is useful to introduce a grand simplifying structure (makes rules - followed 
and broken, classes of behaviour, and thus to simplify, clarify and reveal…)



Overview of today
• Why do we need to invoke symmetry? 

• Taking symmetry theory from point groups to magnetic structures 
– Translational periodicity

• Increases complexity of the irreducible representations
• Rotation-translation operations
• The propagation vector, the k-vector

• A more sophisticated language 
– The little group of the propagation vector Gk
– Permutation representation
– Axial and polar vectors, representations
– Magnetic representation
– Basis vectors
– Couplings - Time reversal and Landau theory

• Symmetries and frameworks 
– Representations and irreducible representations
– Magnetic space groups (time reversal)

➡  Gives the language for understanding magnetic structures, for posing questions

Overview of today  
- Phase transitions 

• Introduction to Landau theory 
• Continuous phase transitions
• Opening the door - a zeroth order approximation
• Energy scales - a hand waving approach
• Couplings - food for thought
• Symmetry and phase transitons

• My ‘building-up’ principle 

• Working with necessity - Ockham’s razor



Overview of this lecture  
-Working with the propagation vector 

• Using the symmetry language 
– Away from a shaken box → Frameworks and information
– Reveal what magnetic structures are 
– Building up descriptions to make the range of possible 

magnetic structures
– Pulling together the different symmetry ideas together within 

representation theory
➡Using the language to build up some structures

Why should an experimentalist use symmetry? 
-Never enough information…

• Magnetic structures are complex 

• Information is destroyed in many ways

• The magnetic form factor : J(Q)

• The magnetic structure factor : FM⊥(Q) 

• Powder averaging

• Domain averaging (powder, single crystal)



Some simple magnetic structures Why should an experimentalist use symmetry? 
-Never enough information…

• Magnetic structures are complex

• Information is destroyed in many ways 

• The magnetic form factor: J(Q) 

• The magnetic structure factor: FM⊥(Q)  

• Powder averaging

• Domain averaging (powder, single crystal)



Complex incommensurate magnetic ordering in 
Β-Mn1-xRux (x=0.12) Why should an experimentalist use symmetry? 

-Never enough information…

• Magnetic structures are complex

• Information is destroyed in many ways

• The magnetic form factor : J(Q)

• The magnetic structure factor : FM⊥(Q) 

• Powder averaging 

• Domain averaging (powder, single crystal)



Why should an experimentalist use symmetry? 
-Never enough information…

• Magnetic structures are complex

• Information is destroyed in many ways

• The magnetic form factor : J(Q)

• The magnetic structure factor : FM⊥(Q) 

• Powder averaging

• Domain averaging (powder, single crystal)

→ Under-defined problem
→ Hidden (unconsidered) possibilities

Definition of magnetic structures, phonons, 
electronic orbitals

• A linear combination of plane waves (basis vectors, Fourier 
components)

• Bloch waves - Eigenfunctions of a periodic Hamiltonian can be 
constructed from Fourier components

➡Once the moments in the primitive unit cell are defined, the k 
vector defines every other spin in the structure
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Bloch waves

The propagation vector
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The formalism of the propagation 
vector, k

•1 moment in the 
asymmetric unit (the 
primitive unit cell)

•Once k is defined, total 
degrees of freedom = 3
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What a magnetic structure (Néel state) is

• An ordered configuration of magnetic moments with a long 
correlation length
–  The order has some translational symmetry (the moments in 

different unit cells - related by primitive lattice vectors - are 
related)

• The orientations of the moments are related by symmetry (what 
happens in detail depends on where the moments are in the 
system and the host crystal structure)

What a magnetic structure isn’t

• A haphazard set of arrows (moments) in a box (crystal structure)
– This could fail to have the translational symmetry relating moments in 

different unit cells (careful with centred cells!!!)
– Magnetic structures are pretty well misunderstood and papers giving 

nonsensical structures an frequent problem…

• There are rules…
– But they are open ended…



What different types of structures are possible?

• Lots:
– Simple ferromagnetic structures (identical moments that align 

parallel)

– Simple antiferromagnetic and ferrimagnetic structures 
(neighbouring moments align antiparallel)

– Complex antiferromagnetic structures
• Commensurate

• Incommensurate (sine waves or spin density waves, helices, etc)

– Open ended → Mixtures

Simple starting points, end members
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Which 
moments are 
related by 
symmetry?

Magnetic structures

• k-vector :  
– Propagate (a component of) the magnetic structure 

through the crystal
– Define translational periodicity and orientation dependence

• basis vectors 
– Build up symmetry within primitive unit cell of G0
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How can magnetic structures be described  
- Simple moments and unit cells?
• People like to think in terms of m||x, m ||y, m ||z – Don’t!
• Begin with m||a, m ||b, m ||c (the components along parallel to the crystal axes)

– This description is intuitive
– Best used to describe the final structure, not to refine it
– Instead use functions that are symmetry adapted to the system you are 

dealing with, these will allow more complex symmetries

• People like to use unit cells (magnetic space groups)
– This description is intuitive
– The description of a magnetic structure within MSG framework is 

equivalent to using representation analysis - it has to be
– Beauty is in the eye of the beholder. 

– Both MSGs and representation theory need to be treated with care. 
Couplings are treated differently, elegance of describing a structure 
depends on what you want and your preferred point of reference.

How can magnetic structures be described  
-an alternative approach
• Origins 

– The eigenfunctions of an electrons with a periodic Hamiltonian are Bloch waves.
with the form:

– Magnetic structures are eigenfunctions of the spin-dependent electronic Hamiltonian and 
have the same form

– If we expand the exponential, we see that it is made up of a Real cosine part and an 
Imaginary sine part

• This formalism very general and we will see that it can describe simple and exotic 
structures, such as sinusoidal and helical structures
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Basis vectors and k-vectors

• Simple structures and ‘sine or cosine’ structures

– The translational properties of a magnetic structure may be described by

– Working with only one basis vector, ignoring the coefficient for simplicity 
and expanding the exponential, this becomes

– If       is real and  the propagation vector is such that the sine part is 
zero, e.g components 0 and 1/2 

➡Left with a simple cosine curve with the moments of the same 
amplitude.
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A simple (cosine) structure



Basis vectors and k-vectors
• Ψ is real and k is such that the sine component is non-zero 

– Leads to mj being complex, so need to make it real

– The moment vector for an atom in the nth cell related to that in the zeroth cell by 
translation tij is given by

– As

– Substitution and expansion of the exponential leads to

– Where the second term is zero as Ψ is real → Amplitude modulated sine 
structure (spin density wave)
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Basis vectors and k-vectors
• Ψ is real and k is such that the sine component is non-zero 

– Leads to mj being complex, so need to make it real

– The moment vector for an atom in the nth cell related to that in the zeroth cell by 
translation tij is given by

– As

– Substitution and expansion of the exponential leads to

– Where the second term is zero as Ψ is real → Amplitude modulated sine 
structure (spin density wave)
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Basis vectors and k-vectors

• Ψ is complex and k is incommensurate 

– Leads to m being complex, so need to make real moments

– The atomic vector for an atom in the nth cell related to that in the zeroth cell by 
translation t is given by

– Substitution and expansion of the exponential leads to

– Where the second term is non-zero. 
– If the real and imaginary parts are not parallel → circular or elliptical helix
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Basis vectors and k-vectors

• Ψ is complex and k is incommensurate 

– Leads to m being complex, so need to make real moments

– The atomic vector for an atom in the nth cell related to that in the zeroth cell by 
translation t is given by

– Substitution and expansion of the exponential leads to

– Where the second term is non-zero. 
– If the real and imaginary parts are not parallel → circular or elliptical helix
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Building structures : basis vectors and k-vectors

• A circular helix 
• k incommensurate (or sine part is non-zero)

• Ψ has is complex, and has non-collinear real and imaginary components (equal 
magnitude) in a plane that does not contain k 

• A conical structure 
• k incommensurate (or sine part is non-zero)

• Ψ has is complex, and has non-collinear real and imaginary components (equal 
magnitude) in a plane that does not contain k  

• k=(000) 
• Ψ  is ferromagnetic and is perpendicular to the helix 

• A cycloid 
• k incommensurate (or sine part is non-zero)

• Ψ has is complex, and has non-collinear real and imaginary components (equal 
magnitude) in a plane that contains k

30

Practice making some magnetic structures



Work with the Brillouin zone and types of k 
e.g. FCC

• The symmetry types of the different points in reciprocal space
• Different points, lines and planes have different compatible symmetry operations; different Gk

• (Care with axis system)
• Several notations exist, Kovalev, Miller and Love, etc

~k0 = ~kh± ~⌧

http://nanosurf.fzu.cz/wiki/doku.php?id=band_structure

• Types of domain (characterised by the types of symmetry 
elements lost during the magnetic ordering)

But what about unseen complexity?
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Configurational (k) domains (translational symmetry)

Pi domains (time reversal)

Orientational (S) domains (rotational symmetry)

Chiral domains Centrosymmetry



Configurational domains (k domains)

• Arise if Gk<>G0

– Operating with the paramagnetic symmetry elements on k 
generates a set of inequivalent vectors which form the star of k, 
e.g. k1=k1E, k2=k1R2, k3=k1R3, k4=k1R4...

– e.g. FCC lattice
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Configurational domains (k domains)

– Each vector in the star generates a different (equivalent) 
configuration domain

– Each configuration domain gives a completely separate set of 
magnetic reflections at positions ±k from the reciprocal lattice 
nodes

– Each set of reflections belongs to a distinct region of the crystal, 
hence effectively to a single state
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π- domains (time reversal)
– Regions in which all the moment directions in one domain are 

reversed with respect to those in the other
– The two domains are related by the time inversion operator
– Ferromagnetic domains provide a simple example
– The intensity and the polarisation scattered by the two 

domains are identical

Time reversal reverses
 magnetic moments

Slip and translational domains
– Regions in which all the moment directions in one domain are 

related to another by translational symmetry
– The intensity and the polarisation scattered by the two 

domains are identical

Apply translation t



e.g. cubic with ⌅k =
�

0, 0,
1
2

⇥

Orientational domains (S-domains)
– Occurs when the symmetry of the magnetic structure is less than that of the 

crystal space group
– S domains are related by the symmetry elements that are lost (k does not 

change)
– The relationship between m and k is the same for all s domains
– Distinguish by single crystal diffraction, not powder diffraction

a
b

c

m||a m||b m||c×
Chiral domains • Occurs when

• Paramagnetic space group is 
centrosymmetric but the  magnetic 
structure is not

• The magnetic moments on 
centrosymmetrically related sites are 
not parallel

• Incommensurate structures
• when 2k is not a reciprocal 

lattice vector so the 
configurational group is acentric

• In this case the two chirality 
domains correspond to +k and 
-k. They both give contributions 
at (hkl) ± k



• Fourier description of magnetic structures

– Each single domain follows 

– In the absence of unbalancing constaints (applied magnetic or 
electric  field, pressure, etc) these will have the same energy

– Leads to questions 
•are there S-domains
•multi-k or k-domain?

Thinking about unseen complexity
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• Example of diffraction pattern 
(structure) with 2k vectors:

– Both will contribute to 
reflections at the same (hkl)

– Cannot distinguish by simple 
diffraction

• 2k structure
• 2 k-domains
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⇥k1 + ⇥k2

k-domains vs multi k
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k-domains vs multi k
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• External constraint, e.g. 

– Applied magnetic field
– Pressure

• Leads to

– Unbalancing domains
– Domain repopulation 

• Multi-k and k domains structures, 
S-domain structures  will respond 
differently 

⇥k1 + ⇥k2

• Single crystal diffraction
– Apply constraint to 

•differentiate k domains from multi-k
•explore S-domains

Diffraction- Single crystal vs. powder
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vs.

vs.

• Powder diffraction
– (diffraction pattern projected onto a line)
– Cannot even see k-domains/multi-k
– But you can always consider the 

possibilities and effects such as single-
ion anisotropy...




