h Why use symmetry?

An Introduction to Magnetic Structures

-Working with the propagation vector
(Crystalline Solids)

e Electronic properties and structures are complex

*  Magnetism is the spin-dependent part

* Never as much information about them as we would like
Andrew S.Wills — Experimentalists typically deal with under-defined problems (there are too many

: possible solutions)
UCL Chemistry

— Symmetry is useful to introduce a grand simplifying structure (makes rules - followed
and broken, classes of behaviour, and thus to simplify, clarify and reveal...)




Overview of today

* Why do we need to invoke symmetry?

¢ Taking symmetry theory from point groups to magnetic structures
— Translational periodicity
* Increases complexity of the irreducible representations
* Rotation-translation operations
* The propagation vector, the k-vector

* A more sophisticated language
— The little group of the propagation vector G,
— Permutation representation
— Axial and polar vectors, representations
— Magnetic representation
— Basis vectors
— Couplings - Time reversal and Landau theory

¢ Symmetries and frameworks
— Representations and irreducible representations
— Magnetic space groups (time reversal)

= Gives the language for understanding magnetic structures, for posing questions

Overview of today
- Phase transitions

* Introduction to Landau theory

Continuous phase transitions

Opening the door - a zeroth order approximation
Energy scales - a hand waving approach

Couplings - food for thought

Symmetry and phase transitons

¢ My ‘building-up’ principle

*  Working with necessity - Ockham's razor




Overview of this lecture _ )
-Working with the propagation vector Why should an experimentalist use symmetry?
-Never enough information...

* Using the symmetry language
& y ry languag ¢ Magnetic structures are complex
— Away from a shaken box = Frameworks and information

, * Information is destroyed in many ways
— Reveal what magnetic structures are
— Building up descriptions to make the range of possible * The magnetic form factor:J(Q)

magnetic structures :
; : > &  The magnetic structure factor: Fy, | (Q)
— Pulling together the different symmetry ideas together within

representation theory » Powder averaging

= (sing the language to build up some structures o Beein s (sendssdnge ans)




Some simple magnetic structures
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Why should an experimentalist use symmetry?
-Never enough information...

* Magnetic structures are complex

* Information is destroyed in many ways

* The magnetic form factor: }(Q)

+ The magnetic structure factor: F, | (Q)

» Powder averaging

* Domain averaging (powder, single crystal)
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Complex incommensurate magnetic ordering in
B-Mn,_ Ru, (x=0.12)

Intensity (a.u.)
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Why should an experimentalist use symmetry?
-Never enough information...

* Magnetic structures are complex

* Information is destroyed in many ways

* The magnetic form factor: J(Q)

« The magnetic structure factor: Fy | (Q)

* Powder averaging

* Domain averaging (powder, single crystal)




Why should an experimentalist use symmetry?
-Never enough information...

* Magnetic structures are complex
* Information is destroyed in many ways

* The magnetic form factor: J(Q)

« The magnetic structure factor: F, | (Q)
» Powder averaging
* Domain averaging (powder; single crystal)

— Under-defined problem
— Hidden (unconsidered) possibilities

Definition of magnetic structures, phonons,
electronic orbitals

* A linear combination of plane waves (basis vectors, Fourier
components)

* Bloch waves - Eigenfunctions of a periodic Hamiltonian can be
constructed from Fourier components
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= Once the moments in the primitive unit cell are defined, the k
vector defines every other spin in the structure
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The propagation vector : .
- e i - 0 The formalism of the propagation
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What a magnetic structure (Néel state) is What a magnetic structure isn’t

* A haphazard set of arrows (moments) in a box (crystal structure)

* An ordered configuration of magnetic moments with a long - T.his could fail to have the trqnslational symmetry relating moments in
correlation Iength different unit cells (careful with centred cells!!!)
— The order has some translational symmetry (the moments in — I\’Iagnetlc; structures are pretty well misunderstood and papers giving
. : S / nonsensical structures an frequent problem...
different unit cells - related by primitive lattice vectors - are
related)

. . * There are rules...
* The orientations of the moments are related by symmetry (what

happens in detail depends on where the moments are in the — Buit they e opan ended...
system and the host crystal structure)




What different types of structures are possible? Simple starting points, end members
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Which
moments are
related by
symmetry?
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Magnetic structures

* k-vector :

Propagate (a component of) the magnetic structure
through the crystal

Define translational periodicity and orientation dependence

* basis vectors
Build up symmetry within primitive unit cell of Go

Z E 7k _—2mik-t;;
Cl/ 'L',l/e :

v,




How can magnetic structures be described
- Simple moments and unit cells?

» People like to think in terms of me,m,,m,; — Don't!
* Begnwithm m,m, (the components along parallel to the crystal axes)
— This description is intuitive

— Best used to describe the final structure, not to refine it

— Instead use functions that are symmetry adapted to the system you are
dealing with, these will allow more complex symmetries

* People like to use unit cells (magnetic space groups)
— This description is intuitive

— The description of a magnetic structure within MSG framework is
equivalent to using representation analysis - it has to be
— Beauty is in the eye of the beholder.
— Both MSGs and representation theory need to be treated with care.

Couplings are treated differently, elegance of describing a structure
depends on what you want and your preferred point of reference.

How can magnetic structures be described
-an alternative approach

* Origins

— The eigenfunctions of an electrons with a periodic Hamiltonian are Bloch waves.

with the form: E 7k —2miki;;
g = Z Cl/ @,V € i
v,k

— Magnetic structures are eigenfunctions of the spin-dependent electronic Hamiltonian and
have the same form

— If we expand the exponential, we see that it is made up of a Real cosine part and an
Imaginary sine part

g = ZC’E \flfl, [cos(—27rE E) i sin(—27rlg . f}}
v,k

« This formalism very general and we will see that it can describe simple and exotic
structures, such as sinusoidal and helical structures




Basis vectors and k-vectors

* Simple structures and" structures

— The translational properties of a magnetic structure may be described by
. Z kE kE_—2mik-t;
Wy = OI/ 7,V e i
v,k

— Working with only one basis vector, ignoring the coefficient for simplicity
and expanding the exponential, this becomes

o = o e = =

my =P, [cos(—27rk “ti;) + 1 sin(—27k - tij)}

- If 'L/J is real and the propagation vector is such that the sine part is
zero, e.g components 0 and 1/2

= Left with a simple cosine curve with the moments of the same
amplitude.

A simple (eesine) structure
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Basis vectors and k-vectors
* Wis real and k is such that the sine component is non-zero

— Leads to mj being complex, so need to make it real

— The moment vector for an atom in the nth cell related to that in the zeroth cell by
translation t; is given by

mj = ck ﬁy e~ 2mikty 4 Ok 7/12_5 e—2mi(=k)-ti;
m; = C’,’f zk,v o 2edatey 1 C,}f (wzk,y)* e 2mi(—k)ti;
- As
i =iy
— Substitution and expansion of the exponential leads to
m; = 2Re(1ﬁ§l,) [005(727#; H)| + 21771(7/75”) [Sin(727rlz -ti5)

— Where the second term is zero as ¥ is real & Amplitude modulated sine
structure (spin density wave)

Basis vectors and k-vectors
* Yis real and k is such that the sine component is non-zero

— Leads to mj being complex, so need to make it real

— The moment vector for an atom in the nth cell related to that
translation t; is given by

Y L —27ik-t;; k ,,—k _—2mi(
gy = Cl/ i,V € 7 ap Cl/ i,V €

mj = Ck: k 8727rik:<tij +CL@ ( k )* 6727r:

v Sy i,V
- As
—k k,x
i,V = ¢i,y
— Substitution and expansion of the exponential leads to
m; = 2Re( Hﬁ,j) cos(—2rk - t:])] + 2Im( Hf,,/) si

— Where the second term is zero as ¥ is real & Amplitud
structure (spin density wave)

— <—(0O—

h) sine
or
cosine




Basis vectors and k-vectors Basis vectors and k-vectors

* ¥ is complex and k is incommensurate * ¥ is complex and k is incommensurate @
— Leads to m being complex, so need to make real moments — Leads to m being complex, so need to make real moments @
— The atomic vector for an atom in the nth cell related to that in the zeroth cell by — The atomic vector for an atom in the nth cell related to that in the z¢ @
translation t is given by translation t is given by @
7y =08 B I 4O () @ O m; = Oy yf, e+ CF (pf,)T e PR o
— Substitution and expansion of the exponential leads to — Substitution and expansion of the exponential leads to @
iy = 2Re(1/75;1,) cos(—2mk - t:])] + 2Im(1/7f’l,) sin(—2mk - t:J)] iy = 2Re(zzﬁy) [cos(—ZTrE . 25:])] + 2[m(1[7£1,) [sin(—Z &0

— Where the second term is non-zero. — Where the second term is non-zero.
— If the real and imaginary parts are not parallel = circular or elliptical helix — If the real and imaginary parts are not parallel = circular or el %

j) elliptical helix




Building structures : basis vectors and k-vectors Practice making some magnetic structures

¢ A circular helix
* k incommensurate (or sine part is non-zero)
* ¥ has is complex, and has non-collinear real and imaginary components (equal
magnitude) in a plane that does not contain k

* A conical structure
* k incommensurate (or sine part is non-zero)
* ¥ has is complex, and has non-collinear real and imaginary components (equal
magnitude) in a plane that does not contain k
* k=(000)
* ¥ is ferromagnetic and is perpendicular to the helix

¢ A cycloid
* k incommensurate (or sine part is non-zero)
* ¥ has is complex, and has non-collinear real and imaginary components (equal
magnitude) in a plane that contains k

30




Work with the Brillouin zone and types of k

e.g. FCC

The symmetry types of the different points in reciprocal space

Different points, lines and planes have different compatible symmetry operations; different G,
(Care with axis system)

Several notations exist, Kovaley, Miller and Love, etc

But what about unseen complexity?

* Types of domain (characterised by the types of symmetry
elements lost during the magnetic ordering)

Configurational (k) domains (translational symmetry)
Pi domains (time reversal)
Orientational (S) domains (rotational symmetry)
Chiral domains Centrosymmetry

32




Configurational domains (k domains) Configurational domains (k domains)

— Each vector in the star generates a different (equivalent)
configuration domain

— Each configuration domain gives a completely separate set of
magnetic reflections at positions +k from the reciprocal lattice
nodes

— Each set of reflections belongs to a distinct region of the crystal,

hence effectively to a single state
o o

:.L.
(] - 1
f2= (0.10)

= 1
kfl = <§,0,0> \
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» Arise if Ge<>Go

— Operating with the paramagnetic symmetry elements on k
generates a set of inequivalent vectors which form the star of k,
e.g ki=kiE, ka=kiRz, k3=kiR3 k4=kR4..

— e.g. FCC lattice




TT- domains (time reversal)
— Regions in which all the moment directions in one domain are
reversed with respect to those in the other
— The two domains are related by the time inversion operator
— Ferromagnetic domains provide a simple example

— The intensity and the polarisation scattered by the two
domains are identical

e g
i g
—_— Time revgrsal reverses —~—
> > magnetic moments . .

e g

Slip and translational domains
— Regions in which all the moment directions in one domain are
related to another by translational symmetry

— The intensity and the polarisation scattered by the two
domains are identical

- | = | —
e [ ———
S —e—

Apply translation t




Orientational domains (S-domains)
— Occurs when the symmetry of the magnetic structure is less than that of the
crystal space group
— S domains are related by the symmetry elements that are lost (k does not
change)
— The relationship between m and k is the same for all s domains
— Distinguish by single crystal diffraction, not powder diffraction

&
< AZ

> 4

b m||a m||b

- 1
e.g. cubic with k = <0, 0, 2)

Chiral domains * Occurs when

* Paramagnetic space group is
centrosymmetric but the magnetic
structure is not

* The magnetic moments on
centrosymmetrically related sites are
not parallel

* Incommensurate structures

* when 2k is not a reciprocal
lattice vector so the
configurational group is acentric

In this case the two chirality
domains correspond to +k and
-k. They both give contributions
at (hkl) + k




Thinking about unseen complexity k-domains vs multi k

* Fourier description of magnetic structures « Example of diffraction pattern
(structure) with 2k vectors:

— Each single domain follows

o o (1 il
— " s e . 7070)+<0a70>
mf = 300F 4f emd R 2 :
it k1 =2 =
— Both will contribute to
reflections at the same (hki)
— Cannot distinguish by simple
diffraction

— In the absence of unbalancing constaints (applied magnetic or
electric field, pressure, etc) these will have the same energy

— Leads to questions

* 2k structure
* 2 k-domains

* are there S-domains ~

* multi-k or k-domain? ” 1 - 1
k= < 0,0) ko = (0,,0)
2 40
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k-domains vs multi k Diffraction- Single crystal vs. powder
» Bogtdargtihdiibaction
— Apftecamstpaitieto projected onto a line)

\ ¢ External constraint, e.g.

— Applied magnetic field

() — Caliitarendiatsels datoarmsrsonuidti-k
Y — Pressure vs. . |
- Bueyeareanabwayssconsider the
oy PY * Leadsto possibilities and effects such as single-
, , ion anisotropy...
— Unbalancing domains —

— Domain repopulation il B 1
S 2 2000 4

* Multi-k and k domains structures, E J ﬂ ﬁ[
S-domain structures will respond - l U ﬁ i ﬁ I i
differently JESEES ﬂ oA
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