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bilbao crystallographic server o,

[ The crystallographic site at the Condensed Matter Physics Dept. of the University of the Basque Country ]

[ Space Groups ] [ Layer Groups ] [ Rod Groups ] [ Frieze Groups ] [ Magnetic Space Groups ]

Space Groups Retrieval Tools

| Year of Crystallog

SERIES

Retrieval Tools

Magnetic Symmetry and Applications
Group-Subgroup

Representations

Solid State

Structure Utilities

Subperiodic

Incommensurate Structures Database
Raman and Hyper-Raman scattering

p

GENPOS Generators and General Positions of Space Groups
y WYCKPOS Wyckoff Positions of Space Groups
HKLCOND Reflection conditions of Space Groups

Series of Maximal Isomorphic Subgroups of Space Groups

WYCKSETS Equivalent Sets of Wyckoff Positions

NORMALIZER Normalizers of Space Groups

KVEC The k-vector types and Brillouin zones of Space Groups

SYMMETRY OPERATIONS Geometric interpretation of matrix column representations of symmetry operations
IDENTIFY GROUP A\ Identification of a Space Group from a set of generators in an arbitrary setting

Magnetic Symmetry and Applications

Contact us
About us
Links

Open access

MGENPOS General Positions of Magnetic Space Groups

MWYCKPOS Wyckoff Positions of Magnetic Space Groups

MAGNEXT Extinction Rules of Magnetic Space Groups

IDENTIEY MAGNETIC GROUP 4\ Identification of a Magnetic Space Group from a set of generators in an arbitrary setting

website with crystallographic databases and

programs for structural and mathematical crystallography, solid
state physics and structural chemistry (PHASE TRANSITIONS).




bilbao crystallographic server

[ The crystallographic site at the Condensed Matter Physics Dept. of the University of the Basque Country ]

started in 1997

present team:
 Emre Tasci

« Gemma de la Flor
- Samuel V. Gallego

* Luis Elcoro

*Gotzon Madariaga

* Mois |. Aroyo

* J. Manuel Perez-Mato




bilbao crystallographic server started 1997

[ The crystallographic site at the Condensed Matter Physics Dept. of the University of the Basque Country ]

external contributors:

* H. Stokes& B. Campbell (USA) - ISODISTORT

past members: * H. Wondratchek (Germany)

* D. Orobengoa - J. Rodriguez-Carvajal (France) - FULLPROF
 C. Capillas * V. Petricek (Chequia) — JANA2006

* E. Kroumova * A. Kirov (Bulgaria)

* S. Ivantchev * M. Nespolo (France)

* K. Momma (Japan) - VESTA
* R. Hanson (USA) - Jmol




é

MGENPOS
MWYCKPOS
MAGNEXT

MAXMAGN A\

General Positions of Magnetic Space Groups
Wyckoff Positions of Magnetic Space Groups
Extinction Rules of Magnetic Space Groups

Maximal magnetic space groups for a given space group and a

propagation vector

Magnetic Space Groups

General Positions of the Group Pn'ma’ (#62.448)

For this space group, BNS and OG seftings coincide.
Its label in the OG setting is given as: Pn'ma’ (#62.8.509)

Standard/Default Setting
(x,y,z) form Matrix form Geom. interp. Seitz notation
X, Y, z, +1 1 0 o0 0 ] 110,00
0 1 o0 0
m,m m, Son E # (1]0,0,0)
-X, -y, -z, +1 -1 0 o0 0 0
0 -1 0 0 - + -
mm,m, oI 0 10,00 +1 (-1]0,0,0)
X, y+1/2, -z, +1 -1 0 0 0
-m.,m -m g (1) _g 162 2(0,1/2,0) 0,y,0 +1 (2y|0.1/2.0)
x"y z
X, -y+1/2, z, +1 i 0 0 0
-m_,m..-m LoD e m x,1/4,z +1 (m, |0,1/2,0)
X"y z

- x+1/2, -y+1/2, -z+1/2, -1

-m_,m_ ,m.
X z

Y

2 (1/2,0,0) x,1/4,1/4 -1

(2,'1112,112,1/2)

-X+1/2, -y, z+1/2, -1
m_,m ,-m
X'y z

2(0,0,1/2) 1/4,0,z -1

(21'|1/2,0,1/2)

-x+1/2, y+1/2, z+1/2, -1
-m ,m ,m
xX 'y z

n (0,1/2,1/2) 1/4,y,z -1

(m [172,112,1/2)

x+1/2,y, -z+1/2, -1
m ,m ,-m
Xy z

1 0 0 1/2
0 1 0 0
0 0 -1 1/2

axy1/4-1

(m 1/2,0,1/2)

Example

LaMnO,
Pn’ma’ (62.448)



Magnetic Space Groups

MGENPOS

) MWYCKPOS

MAGNEXT

MAXMAGN 4\

General Positions of Magnetic Space Groups
Wyckoff Positions of Magnetic Space Groups
Extinction Rules of Magnetic Space Groups

Maximal magnetic space groups for a given space group and a

propagation vector

Wyckoff Positions of the Group Pn'ma’ (#62.448)

For this space group, BNS and OG settings coincide.
Its label in the OG setting is given as: Pn'ma’ (#62.8.509)

. ... |[Wyckoff .
Multiplicity letter Coordinates

(x,y,z | m_, MM ) (x+1/2,~y+1/2,-z+1/2 | -m,,m,,m )
(-x,y+1/2,-z | -m_ m -m )(x+1/2,-y,z+112 | m_,m ,-m ) . . .

8 d Xy z Site Symmetries of the Wyckoff Positions
(+X,7y,~z | m my ,m ) (-x+1/2,y+1/2,z+1/2 | -m oM .mz)

. Sit
(x-y+112zZ|-m,m -m.) (x+1/2y-z+1/2 | m m -m,) wp Representative .
4a (0,00 m_,m ,m) -1

(x,1/4,z | 0,m_,0) (x+1/2,1/4,-z+1/2 | O,m_,0) x v ¢

4 c ' ! 4b (00,12 m m m) -1
(-x,3/4,-z | 0,m ,0) (-x+1/2,3/4,z+1/2 | 0,m ,0) L .

Y Y 4c (xn1l4sz I O,my,O) m.

. : (0,0,1/2 | mx,my,mz) (1/2,1/2,0 | -mx,my,mz) 8d (x,y’z [ mx’my,mz) 1

(0,12,1/2 ] -m_,m ,-m) (12,000 | m_m ,-m)
Xy z Xy z

(0,0,0| m_,,m ,m)) (1/2,1/2,1/2 | -m_,m ,m )

4 a Xy z Xy z
(0,12,0 | -m_m ,-m_) (1/2,0,1/2 | m_,m_,-m_)

Xy Z x'y oz




Wyckoff

Multiplicity letter Coordinates
(x,y,z| m oMM ) (x+1/2,-y+1/2,-z+1/2 | -m_,m_,m_)
Space Group: y Ty
' ' (-x,y+1/2,-z | -m, m -m )( x+1/2,-y,z+1/2| m_,m ,-m )
Pn'ma 8 d ¥y
(-%,~y,-z | m my ,m ) (-x+1/2,y+1/2,z+1/2 | -mx,my,mz)
(x,~y+1/2,z | -m_ m =M ) (x+1/2,y,-z+1/2 | mx,my,-mz)
(x,1/4,z | O,my,O) (x+1/2,1/4,-z+1/2 | O,my,O)
4 ¢ l(x3/4-z| Om,0)  (x+1123/4,2+1/2]0,m ,0)
(0,0,172 fm_,m ,m ) (1/2,1/2,0
& b e
(0,1/2,1/2 | (1/2,0,0 mx,my,-m
(0,00 m_,m ,m) (1/2,1/2,1/2 | -m_,m_,m_)
4 a Xy z X y z
(0,12,0 | -m_,m_,-m_) (1/2,0,1/2 | m_,m_,-m_)
Xy z 'y oz

A){node along x

F mode along y
weak ferromagnet

$3¢4

Gz mode along z

La

Mn



Magnetic Space Groups

MGENPOS General Positions of Magnetic Space Groups
MWYCKPOS Wyckoff Positions of Magnetic Space Groups
MAGNEXT Extinction Rules of Magnetic Space Groups

MAGNEXT

MAGNEXT: Magnetic Systematic Absences

_ Option A: Systematic absences for a magnetic space group in standard settings

tinction rules for . —
any Shubnikov magnetic Magnetic Space Group number: Please, enter the label of group or

)e obtained introducing the (Standard)efault Setting )

i for this purpose at the
pted form of the structure

Other interfaces for alternative uses MAGNEXT are:

e Option B: For systematic absences for a magnetic space group in any setting, click here
/a get of generators in any e Option C: For a list of magnetic space groups compatible with a given set of systematic absences,
. . click here
patible with a set of

» For systematic absences for magnetic superspace groups click here
dr a superspace group Y g perspace group



Diffraction symmetry (non-polarized) and systematic absences

Non-polarized magnetic diffraction at diffraction vector H is proportional
to the component of F,(H) perpendicular to H

H =ha*+kb*+Ic*- = (h,k,)
Consequences of a symmetry operation {R,0|t}:

non_magnetic: F(H) — ei2TcH.t F(H_R) IntenSity(H.R)=|ntenSity(H)

magnetic: Fy,(H) = 6 det(R) e*™Ht R. F,,(H.R) Intensity(H.R)=Intensity(H)

H.t = ht +kt+It,
H.R =(h,k,/).R



Diffraction symmetry (non-polarized) and systematic absences

H=ha*+kb*+lc*- = (h,k,l)
Extinction rules: (“trivial” cases) »
No conaiton
{11000 } F(H) = e2HtF(H.R) => F(H)= F (H)/

(non-magnetic structures)

F,(H) = 6 det(R) e?"Ht R, F,,(H.R) —> F(H)=- F/(H)

\ zero!

1'100 1/2 i
{rl /2} F(H) = e™ F(H) Nuclear diffraction: absent | = odd
(type IV MSG)

FM(H) =-em FM(H) Magnetic diffraction: absent I= even



Diffraction symmetry (non-polarized) and systematic absences

H=ha*+kb*+ic*- = (hk,I)
Extinction rules:
no condition
{2,1000 } F(H)=e2HtF(H) = F(H)= F(H)/
H=(0,0,/) | |
H.2,=H Fu(H) = 6 det(2,) €21t 2, Fy(H) —> Fi (H)= 2, Fy,(H)
el .

F,,=(0,0,Fz)//H absence for all (0,0,/)

] | _ absence
{ZZI 007% } F(H) = ei2nH.t F(H) —_ F(H) —_ em/ F(H) -——>f0r |=0dd

H=(0_’O’I) F.,(H) = 6 det(2,) e°>"Ht 2. F,(H) —> .

H.2=H Fu(H) =6 2,. Fy\(H)
| =even: F,,=(0,0,Fz) // H absence €—
| =odd F,=(Fx,Fy,0) not parallel to H presence

Systematic absences for {2, 007% }?




Using MAGNEXT in its option B, re-obtain the systematic absences
for the symmetry operations {2,|] 000 }; and for {2,| 00 % }, and obtain
those for the corresponding primed operations.

(exercise 5)

Using MAGNEXT obtain the systematic absences that should fulfill the
magnetic diffraction of LaMnO3

(space group Pn’ma’, moments along x)

(exercise 6)



Magnetic diffraction Systematic Absences for the group Pn'ma’ (#62.448)

For this space group, BNS and OG settings coincide.
Its label in the OG setting is given as: Pn'ma’ (#62.8.509)

Values of h, k, I: h integer, k integer, | integer

Systematic absences for special reflections:

Diffraction vector type: (0 k0) ->  Systematic absence: k=2n

For k = 1: I /=0 F = (Fx,0,0)

For k = 2: I =0 F = (0,Fy,0)

Diffraction vector type: (h00) -> Systematic absence: h=2n+1

For h = 1: I =0 F = (0,0,0)
For h = 2: I /=0 F = (0,Fy,0)
Diffraction vector type: (001) -> Systematic absence: |1=2n+1
For 1 = 1: I =20 F = (0,0,0)
For 1 = 2: I /=0 F = (0,Fy,0)

[Show form of structure factor for every type of reflection]

Go to the list of the General Positions of the Group Pn'ma’ (#62.448) [OG:Pn'ma’ (#62.8.509)]
Go to the list of the Wyckoff Positions of the Group Pn'ma’ (#62.448) [OG:Pn'ma’ (#62.8.509)]

[Show systematic absences in a different setting]



Symmetry-adapted form of the Structure Factors

Magnetic Space Group: Pn'ma’ (#62.448) [OG: Pn'ma’ (#62.8.509)]

Values of h, k, I: h integer, k integer, | integer

Structure factors for general reflections (produced by centrings):

Diffraction vector type: h,k,l

For any h,k,1l: I/=0 F = (Fx,Fy,Fz)

Structure factors for special reflections:

Those diffraction vector types which are fully absent due to the general rule are not listed

Diffraction vector type: 0,k,0
For k = 1: I/=0 F = (Fx,0,0)

For k = 2: I=0 F = (0,Fy,0)

Diffraction vector type: h,0,

For h =1, 1 = 1: I/=0 F = (0,Fy,0)
For h=1, 1= 2: I /=0 F = (0,Fy,0)
For h =2, 1 = 1: I/=0 F = (0,Fy,0)
For h = 2, 1 = 2: I/=0 F = (0,Fy,0)
Diffraction vector type: h,0,0
For h = 1: I=0 F = (0,0,0)
For h = 2: I /=0 F = (0,Fy,0)
Diffraction vector type: 0,0,l
For 1 = 1: I =0 F=(0,0,0)
For 1 = 2: I /=0 F = (0,Fy,0)



For more subtle systematic absences in LaMnO3
(due to the special position of the magnetic atoms), see:

®

research papers h-4
’;“r;"p"’l'i‘;"d Magnetic symmetry in the Bilbao Crystallographic

Crystallography Server: a computer program to provide systematic
ISSN 0021-8898 absences of magnetic neutron diffraction
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Magnetic Space Groups

MGENPOS General Positions of Magnetic Space Groups
MWYCKPOS Wyckoff Positions of Magnetic Space Groups
MAGNEXT Extinction Rules of Magnetic Space Groups
Ba;Co:ClO,;

nuclear/positional reflection condition:
(2h,-h,l) 1=2n

(magnetic sites: 2a, 4e, 4f. all (0,0,m,)
Magnetic diffraction:

Reflection (2, -1,3) pyre magnetic

m-'h;l)
@m’c (194.268): absent | even>
present | odd

P6;/m’m’c (194.270): absent | odd

( spins are symmetry restricted to be along c in
both groups)




Paraelectric phase P4,/mnm

Site 4f

O
O
e @
0=
<O

(a) P4, /m'n'm

(136.499)

magnetic absences
(common for the two
MSGs)

(h,0,0) h even
(0,k,0) k even
(0,0,I) I any

structure factor is
necessarily of the

’ form(:o,o,Fz)

(b) P4, /mnm’ (136.500)
(0,k,I) k+l odd (Fx,0,0)
(h,0,I) h+l odd (0,Fy,0)
absences that permit to
distinguish the two MSGs




Magnetic Symmetry and Applications

MGENPOS General Positions of Magnetic Space Groups
MWYCKPOS Wyckoff Positions of Magnetic Space Groups
MAGNEXT Extinction Rules of Magnetic Space Groups
IDENTIFY MAGNETIC GROUP Iadrtta)li':::irc:;igtr:i :; a Magnetic Space Group from a set of generators in an
MPOINT 4\ Magnetic Point Group Tables

éM AXMAGN m:;ir:?::ii:n:ragtel};s;i%i Igsroups for a given a propagation vector and resulting
MAGMODELIZE Magnetic structure models for any given magnetic symmetry
k-SUBGROUPSMAG :Iuap%r;ggﬁ subgroups consistent with some given propagation vector(s) or a
MAGNDATA A\ A collection of magnetic structures with transportable cif-type files
MVISUALIZE A\ 3D Visualization of magnetic structures with Jmol
MTENSOR A\ Symmetry-adapted form of magnetic crystal tensors




MAXMAGN: Maximal magnetic space groups for a given a propagation vector and resulting magnetic structural models

MAXMAGN provides the possible magnetic space groups that
can be assigned to a 1-k commensurate magnetic phase
assuming that the magnetic symmefry is a maximal one. The
space group of the paramagnetic phase and the observed
propagation vector are required as input. Optionally, the parent
paramagnetic structure can be introduced (by hand or by a cif
file). In this latter case the program provides the constrains for
the different possible symmetries and cif-like files can be
produced. These files permit the different alternative models to

MAXMAGN

O Structure data of the paramagnetic phase will be included 0 Non-conventional setting
Please, enter the label of the space group of the paramagnetic ==y —
phase e

Please, enter the propagation vector k:

Ky 0 ky 0 kz o

(_ Submit )

The program provides ALL possible MAXIMAL magnetic symmetries for single-k
magnetic structures compatible with a known propagation vector.

For each possible symmetry, a starting magnetic structure model is provided, with the

symmetry constraints and the parameters to be fitted.

Usually magnetic phases comply with one of these MAXIMAL symmetries. But if
necessary, one can descend to lower symmetries, liberating some of the constraints on

the magnetic moments (and atomic positions).

For simple propagation vectors: A very efficient and simpler alternative
method to representation method



Maximal magnetic space groups for the space group 64 (Cmce) and the propagation vector k = (1, 0, 0)

0 i 0 1/4
-1 0 0 1/4

Pcnma (#62.455) 0o o0 1 0

1/4
/
Paben (#60.429) ( Do o 104)
Alternatives (twin-related)

[s] [s] 1 1/4
i o0 o 1/4
Pgbem (#57.390) ( o 1 o o) _Show

1/4

0 0 1 1/4)
i 0 0 0

Alternatives (twin-related)

La,CuO,

P,ccn (56.374)



Atom

Selected magnetic space group: 5- P Accn (#56.374)

Setting of the parent group

Lattice parameters: a=5.35700, b=13.14800, ¢c=5.40600, alpha=30., beta=90., gamma=90.

Magnetic Moments associated to magnetic atoms

New WP

Multiplicity

Magnetic moment | Values of M, M , M,

Cu1 Cu 0.00000 0.00000 0.00000

(0,0,0 | O,my,mz) (0,172,172 | 0,-my,mz)
(1/2,1/2,0 | 0,-my,-mz) (1/2,0,1/2 | O,my,-mz)

oM M)

= 0.00001

M
y

M_ = o.00001
z

La1 La 0.00000 0.36110 0.00460

(Oy:z| 0.m,m,) (0,-y+1/2,1/2 | 0,-m ,m,)
(0.1/2-2+1/2]0-m ,m.) (0,-y.-z | O.m m.)

(1/2,1/2,0 |0,-m -m.) (112,112 O.m -m,)

(1/2,0,2+1/2 | O.m, -m.) (1/2,-y+1/2,2] 0,-m -m)

01 0 0.25000 -0.00510 0.25000

(1/4.y,1/410,m 0) (3/4,-y+1/2,3/4 | 0,-m, ,0)
(3/4,-y3/41 0,m 0) (1/4,112,1/4 ] 0,-m 0)
(3/4,1/2,1/4 | 0,-m, 0) (1/4,-y,3/4 | O,m 0)

(1/4,-y+112,3/4 | 0,-m, ,0) (3/4,0,1/4 | 0,m,,0)

02 0 0.00000 0.18300 -0.02430

0,y,z | O,my,mz) (0,-y+1/2,1/2 | 0,-m ,mz)
(0,1/2,-z+1/2 | O,-my,mz) (0,-y,-z | O,my,mz)
(1/2,1/12,0 | 0,—my,-mz) (1/2,-y,1/12 | O,my,-mz)

(1/2,0,-z+1/2 | O,my,—mz) (1/2,-y+1/2,-z | 0,-my,-mz)

[Go to setting standard (¢, a, b ; 0, 0, 0)]

( Export data to MCIF file VY(Gotoa subgroup )



Use MAXMAGN to explore the four possible alternative models
of maximal symmetry for HoOMnO, (exercise 7)

7. Obtain with MAXMAGN the four possible alternative models of
maximal symmetry for the magnetic structure of HoMnO,, which are
compatible with its propagation vector k= (1/2,0,0) (upload as
starting data the cif file of its parent Pnma structure). Obtain the
symmetry constraints for the moments of the Ho atoms, in each
case. Check that the two possible orthorhombic symmetries can be
distinguished by the systematic absence of all reflections of type (h,
0,))+k, which will happen for one of the groups and not the other, if
the spins are aligned along a. See tutorial of MAXMAGN, example
2, for a more detailed tutorial exercise. (file required:
3.HoMnQO3_parent.cif).

Tutorial MAXMAGN, example 2



HOMI‘IO3 (Mufoz et al. Inorg. Chem. 2001)

diffraction peaks: Gp=Pnma
. Y Y @ propagation vector k=(1/2 0 0) : point X
magn
OO/
c*
e a* e e e

Maximal magnetic space groups for the space group 62 (Pnma) and the propagation vector k = (1/2, 0, 0)

Maximal subgroups which allow non-zero magnetic moments for at least one atom are coloured

2 0 0 1/4
( o g) P_na2,
Alternatives (twin-related)
P_.nm2
I- Alternatives (twin-related) a 1
_1 2
I-[ o ] P,2,/a
o 1 0 0
o 0 1 0 P 2 m
I-lklumadves(mln-nhted)] a 1/




HoMnO,; An Inevitable Multiferroic...

parent space group: Pnma, k=(1/2,0,0)

(2ap, bp, ¢p; 0,0,0) (—€p. by, 22p;15,0,0) (=byp, 24y, c5; 3/s, Vs, 0) (2a,, by, ¢p; 3/4,0,0)

graphic models are depicted Structure reported in 2001,

assuming collinearity along x but authors unaware of its
(my and mz are symmetry allowed) multiferroic character




A more complex example: HoMNO,; (Murioz et al. Inorg. Chem. 2001)

diffraction peaks: Gp=Pnma
propagation vector k=(1/2 0 0) : point X
magn.
Y @ Y o W/ o W/
c* :
point group

’ P_.nm2 P mm21’
l—a 1" Induced

polarization:
multiferroic

P.2,/m 2/m1’
Pz Pnmal'
- { P,na2, mm2 1
a“J ‘\
= > {11200} {P.2,/a 2/mY’
< a > Equivalent to a lattice
2a translation for the positions

1" belongs to the point group

symmetry operation kept: {1°1/20 0} —— of the magnetic phase



HoMnO, Magnetic space group: P,nm2, (31.129)

unit cell: 2a, b, ¢ (non-conventional setting)

WP + (1’]1/2 0 0)

8b (X, v, z|m,m,m,), (-x+1/4, -y, z+1/2 | -m,, -m,, m,),
(x,-y+1/2, z | -m,, m,, -m,), (-x+1/4, y+1/2, z+1/2 | m,, -m, -m,)

4a (%, 1/4,2[ 0, m, 0), (-x+1/4, 3/4,z+1/2 | O, -m,, 0)

Equivalent to the use of space group Pnm2,(31)
with half cell along a:

Atomic positions of asymmetric unit:

Ho1 4a 0.04195 0.25000 0.98250

Ho2 4a 0.95805 0.75000 0.01750

Mn1 8b 0.00000 0.00000 0.50000 —

O1 4a02319070.25000 011130 | | sositiors m the lower

012 4a 0.76§90 0.75000 0.88870) | symmetry

02 8b 0.16405 0.05340 0.70130
3595 0.55340 0.29870}

Magnetic moments of the asymmetric unit (uB):

Mn1 3.87 =0.0 =0.0

General position:
X, Y, Z not restricted
by symmetry!




a CIF-type file can be produced:

These files permit the
different alternative models
to be analyzed, refined,
shown graphically,
transported to ab-initio
codes etc., with programs as
ISODISTORT, JANA2006,
STRCONVERT, etc. A
controlled descent to lower
symmetries is also possible.

| _space_group.magn_nunber, BNS  31.129

| —space_group.magn_name, BN "P_.bmn 2_1"

_cell_length_a 11.67858
_cell_length_b 7.360860
_cell_length_c 5.25728
_cell_angle_alpha 98 .08
_cell_angle_beta 98.08
_cell_angle_gamma 98 .68
loop_

-Space..garoup, symop .magn..id

_Space, aroup._symop.naan_operation, xyz

----- (ol

1 X,¥,Z,+1 mx,my,mzZ

2 -X+374,-v,Z+1/2 ,+1 -mx,-my ,MZ

3 X,-v+1/2,Z,+1 -mx,my,-nz

4 -x+3/4,v+1/2,2+1/2 ,+1 mx,-my ,-MZ
loop_
-Space,_group,_symop.magn_centering id
-Space,_ group, symop.magn, centering, xyz

1x,y,2,40 memy,mz
2 x+1/2,v,2,-1 —mx,-my ,—-MZ

loop_
_atom_site_label
. _atom_site_type_symbol

|
tw]
=
(m}
=
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!_utom_site_occupancy
Ho Ho 8.84195 @.265000 8.93256 1
i Ho_1 Ho ©.95865 8.75008 0.81758 1
Mh Mn ©.00008 6.00000 0.50008 1
!Di 0 8.23118 A.26000 0.11136 1
‘011 0 8.7689 8.75008 0.535870 1
102 0 B.16485 B.05340 8.70138 1
i02_1 0 B8.83595 B.565348 0.29370 1
loop_
|_utom_site_moment_label

M T N L S T R e £ )

| _atom_site_moment_crystalaxis_z

{Mn 3.87 0.0 0.9




Derive the symmetry constraints on some crystal tensor properties of
a magnetic phase using MTENSOR
(exercise 10)

8. Use MTENSOR to obtain some of the crystal tensor properties of the magnetic
phase of HOMnO; (electric polarization, magnetization, linear magnetoelectric tensor,
cuadratic magnetoelectricity,...). The same for the magnetic phase of LaMnO,.
(Upload the corresponding mcif files in STRCONVERT, copy the list of symmetry
operations in the output of STRCONVERT and paste in the option B of MTENSOR,
but deleting the translational parts, so that the point-group operations are left). (files
required: 2.HoMnO3.mcif and 4.LaMnO3.mcif)



Na,MnF; Parent: P2,/c

k= (0, 1/2, 0)
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(exercise 9)
Tutorial MAXMAGN, example 2

9. From the knowledge of its parent space group and its propagation
vector (P21/c and k=(0,1/2,0)), use k-SUBGROUPSMAG to explore
all possible symmetries of the magnetic structure of Na,MnF; and
check that the system is probably a multiferroic of type Il, with the
magnetic ordering breaking the symmetry into a polar phase.
Assuming that the Fe spins are aligned along a, obtain with
MAXMAGN the two possible alternative models of maximal
symmetry. See tutorial of MAXMAGN, example 4. (file required:
5.Na2MnF5_parent.cif)
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Why a k=(0,1/2,0) magnetic ordering in a structure with parent
space group P2,/c breaks necessarily its point group symmetry
of the structure?

Because the lattice (and “antilattice”) resulting from this k-vector is
incompatible with the screw operation {2,|0 ° 0} ...

10. Using k-SUBGROUPSMAG obtain the k-maximal subgroups for the parent space
group P2/c for a propagation vector k=(0,1/2,0), and compare with those obtained for
P2,/c. Check that in the case of a parent P2/c symmetry the inversion symmetry is
not lost in any of the possible maximal MSGs. This happens fin the case of P2,/c
symmetry because the binary rotation includes a non-trivial translation.




Use k-SUBGROUPSMAG to explore all possible symmetries
for HoOMnO, (exercise 8)

11. Using k-SUBGROUPSMAG explore all possible symmetries for
the magnetic structure of HoMnO,, which are compatible with its
propagation vector. Check that there are two different possible
MSGs of the same type, namely of type P_2,. From the output of the
program for the two groups, determine what makes them different.



Possible magnetic symmetries for a magnetic phase with
propagation vector (1/2,0,0) and parent space group Pnma

Pnmal’

Pa21 /m Pc21 /C Pbmn21 Pana21

Pa21 PbC

exp(i2rk.a) = -1

Symmetry operation {1°|1/2,0,0} is present in any case: all MSGs are type IV

(magnetic cell= (2a,,b,,c,))



