9-9:50 am I. Symmetry based modeling and description of magnetic structures. The magCIF file format. An overview.

- 10 min coffee break

10-10:50 am II. Magnetic space groups (Shubnikov groups) (50 mins)

- 10 min coffee break

11-12:15 am III. Hands-on demonstration of some Bilbao

Crystallographic Server tools I: MAGNEXT, MAXMAGN, MTENSOR, k-SUBGROUPSMAG, MVISUALIZE

http://www.cryst.ehu.es/resources/ORNL2016/

Magnetic Crystallograhy: Symmetry based modeling and description of magnetic structures

J. Manuel Perez-Mato Facultad de Ciencia y Tecnología Universidad del País Vasco, UPV-EHU BILBAO, SPAIN "It is only slightly overstating the case to say that physics is the study of symmetry"

P. W. Anderson

Science, New Series, Vol. 177, No. 4047 (Aug. 4, 1972), 393-396.

Acknowledgements:

The past and present team in Bilbao of the...

- J.L. Ribeiro (Braga, Portugal)
- H. Stokes & B. Campbell (Provo, USA) program ISODISTORT
- V. Petricek (Prague) program JANA2006
- J. Rodriguez-Carvajal (Grenoble) program FullProf
- K. Momma (Tsukuba) program VESTA
- R. Hanson (Northfield, USA) program Jmol

Symmetry-Based Computational Tools for Magnetic Crystallography

J.M. Perez-Mato,¹ S.V. Gallego,¹ E.S. Tasci,² L. Elcoro,¹ G. de la Flor,¹ and M.I. Aroyo¹

¹Departamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, 48080 Bilbao, Spain; email: jm.perez-mato@ehu.es
²Department of Physics Engineering, Hacettepe University, 06800 Ankara, Turkey

Annu. Rev. Mater. Res. 2015. 45:217-48

Symmetry is only detected when it does not exist!

Magnetic Symmetry: We do not add but SUBSTRACT symmetry operations !

Symmetry operation to be considered: Time inversion/reversal: {1'|0,0,0} (always present in non-magnetic structures but ABSENT in magnetically ordered ones!)

- Does not change nuclear variables

- Changes sign of ALL atomic magnetic moments

Magnetic structures only have symmetry operations where time reversal 1' is combined with other transformations, or is not present at all: $\{1'|t\} = \{1'|0,0,0\} \{1|t\}$ $\{m'|t\} = \{1'|0,0,0\} \{m|t\}$ $\{2'|t\} = \{1'|0,0,0\} \{2|t\}$ $\{3'^+|t\} = \{1'|0,0,0\} \{3^+|t\}$, etc. But $\{1'|0,0,0\}$ alone is never a symmetry operation of a magn. struct.

magnetic ordering: a symmetry breaking process

Magnetically ordered phases:

Time inversion $\{1'|0\ 0\ 0\}$ is NOT a symmetry operation of a magnetic phase

Description of a magnetic structure in a crystallographic form:

Wyckoff positions in a magnetic structure...

Multiplicity	Wyckoff letter	Coordinates	
8	d	$\begin{array}{ll} (x,y,z \mid m_{x},m_{y},m_{z}) & (x+1/2,-y+1/2,-z+1/2 \mid -m_{x},m_{y},m_{z}) \\ (-x,y+1/2,-z \mid -m_{x},m_{y},-m_{z}) & (-x+1/2,-y,z+1/2 \mid m_{x},m_{y},-m_{z}) \\ (-x,-y,-z \mid m_{x},m_{y},m_{z}) & (-x+1/2,y+1/2,z+1/2 \mid -m_{x},m_{y},m_{z}) \\ (x,-y+1/2,z \mid -m_{x},m_{y},-m_{z}) & (x+1/2,y,-z+1/2 \mid m_{x},m_{y},-m_{z}) \end{array}$	M in
4	с	$\begin{array}{ll} (x,1/4,z \mid 0,m_y,0) & (x+1/2,1/4,-z+1/2 \mid 0,m_y,0) \\ (-x,3/4,-z \mid 0,m_y,0) & (-x+1/2,3/4,z+1/2 \mid 0,m_y,0) \end{array}$	La
4	b	$(0,0,1/2 m_x,m_y,m_z) (1/2,1/2,0 -m_x,m_y,m_z) (0,1/2,1/2 -m_x,m_y,-m_z) (1/2,0,0 m_x,m_y,-m_z)$	Mr
4	а	$\begin{array}{ll} (0,0,0 \mid m_{x},m_{y},m_{z}) & (1/2,1/2,1/2 \mid -m_{x},m_{y},m_{z}) \\ (0,1/2,0 \mid -m_{x},m_{y},-m_{z}) & (1/2,0,1/2 \mid m_{x},m_{y},-m_{z}) \end{array}$	

tput of YCKPOS BCS

 $(\mathbf{F}_{\mathbf{v}})$

Magn. Space

Group:

Pn'ma'

LaMnO₃

mode along y weak ferromagnet

mode along x $(\mathbf{A}_{\mathbf{x}})$

magCIF

a CIF-type file format to communicate magnetic structures

(developed by the Commission on magnetic structures of the IUCr)

These files permit the different alternative models to be analyzed, refined, shown graphically, transported to abinitio codes etc., with programs as ISODISTORT, JANA2006, STRCONVERT, FullProf, VESTA, Jmol, etc.

It includes incommensurate structures

_space_group.magn_number_BNS 31.129 "P b m n 2 1" _space_group.magn_name_BNS _space_group.magn_point_group_"mm21'' _space_aroup.magn_point_group_number "7.2.21" _cell_lenath_a 11.67080 7.36060 _cell_lenath_b 5.25720 cell lenath c 90.00 cell anale alpha _cell_angle_beta 90.00 90.00 _cell_angle_gamma loop_ _space_aroup_symop.magn_id _space_group_symop.magn_operation_xyz _space_group_symop.magn_operation_mxmymz 1 x,y,z,+1 mx,my,mz 2 -x+3/4.-y.z+1/2.+1 -mx.-my.mz 3 x,-y+1/2,z,+1 -mx,my,-mz 4 -x+3/4,y+1/2,z+1/2,+1 mx,-my,-mz loop _space_group_symop.magn_centering_id _space_group_symop.magn_centering_xyz _space_group_symop.magn_centering_mxmymz $1 \times y_{z+1} \times m_{x,my,mz}$ 2 x+1/2,y,z,-1 -mx,-my,-mz loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x <u>_atom_site_fract_v</u> <u>_atom_site_fract_z</u> _atom_site_occupancy Ho Ho 0.04195 0.25000 0.98250 1 Ho_1 Ho 0.95805 0.75000 0.01750 1 Mn Mn 0.00000 0.00000 0.50000 1 01 0 0.23110 0.25000 0.11130 1 01_1 0 0.7689 0.75000 0.88870 1 02 0 0.16405 0.05340 0.70130 1 02_1 0 0.83595 0.55340 0.29870 1 loop_ _atom_site_moment_label <u>_atom_site_moment_crystalaxis_x</u> <u>_atom_site_moment_crystalaxis_y</u> <u>_atom_site_moment_crystalaxis_z</u> Mn 3.87 0.0 0.0

MAGNETIC SYMMETRY IS A "WELL DEFINED" SYMMETRY

A "well defined symmetry operation (in a thermodynamic system) must be maintained when scalar fields (temperature, pressure,...) are changed, <u>except if a phase transition takes place</u>.

"symmetry-forced" means : "forced within a thermodynamic phase"

Symmetry-dictated properties can be considered symmetry "protected"

BEWARE:

Other "extended" symmetries proposed from time to time in the literature do not fullfill this condition!

Magnetic ordering in CsCoBr₃

Phys. Rev. B 12 (1975)

W. B. Yelon*[†] Institut Laue-Langevin, B.P. 156, 38042 Grenoble Cedex, France

D. E. Cox* Brookhaven National Laboratory, Upton, New York 11973

M. Eibschütz Bell Laboratories, Murray Hill, New Jersey 07974 (Received 31 March 1975)

The magnetic ordering in CsCoBr₃ has been studied by neutron diffraction, on both powder and single-crystal specimens, and by specific-heat and magnetic-susceptibility measurements. This compound has the hexagonal CsNiCl₃ type of structure, and the susceptibility shows characteristic one-dimensional behavior, while the specific heat indicates that three-dimensional ordering occurs at about 28°K. The neutron single-crystal study shows that between T_N and 14°K the magnetic structure is consistent with the orthorhombic space group $Cmc2_1$, with one-third of the antiferromagnetic cobalt chains being disordered and the other two-thirds antiferromagnetic coupled in the basal plane. Between 4 and 10°K the structure may be described by the space group $Cm'c2_1$, and is similar to the collinear arrangement reported for CsCoCl₃ and RbCoBr₃ but with a small cauting of about 10°. The transformation from one structure to the other in the region of 10–14°K can be explained equally well by either the formation of an intermediate base of lower symmetry or by a discontinous process in which the two phase coexists the powder data temperature phase compatible with the space $C_pm'c2_1'$, consistent with

Use of magnetic space groups (Shubnikov groups) widely extended in the 60s-70s

FIG. 1. Arrangement of the magnetic moments according to the magnetic space group $P_{2b}cca'$. All spins are in the *ac* plane. Representation analysis is introduced as a "superior" alternative to magnetic symmetry groups, and it can also deal with incommensurate structures.

Abstract:

(1968)

Acta Cryst. (1968). A 24, 217

Representation Analysis of Magnetic Structures

BY E.F. BERTAUT

In the analysis of spin structures a 'natural' point of view looks for the set of symmetry operations which leave the magnetic structure invariant and has led to the development of magnetic or Shubnikov groups. A second point of view presented here simply asks for the transformation properties of a magnetic structure under the classical symmetry operations of the 230 conventional space groups and allows one to assign irreducible representations of the actual space group to all known magnetic structures. The superiority of representation theory over symmetry invariance under Shubnikov groups is already demonstrated by the fact proven here that the only invariant magnetic structures describable by magnetic groups belong to real one-dimensional representations of the 230 space groups. Representation theory on the other hand is richer because the number of representations is infinite, *i.e.* it can deal not only with magnetic structures belonging to one-dimensional real representations, but also with those belonging to one-dimensional complex and even to two-dimensional and three-dimensional representations associated w th any k vector in or on the first Brillouin zone.

we generate from the transformation patrices of the spine a representation I of the space of

It includes incommensurate magnetic structures...

computer programs for representation analysis soon available:

<mark>€ Bastreps Gui Interface</mark>					
Basireps (version: July-2003, JRC-LLB) Irreducible representations of Space Groups Basis functions of polar and axial vector properties					
Code of files:				Browse	
Title: SpaceGroup (HM) all or generators separate	symbols) d by '',''				
K-Vector			Brillouin Zone Labe		
Polar Vector Number of Atoms:	C Axial Vector	olicit Sublattices	Atoms in unit cell		
Syr	ibol x/a	y/a	z/a		
Atom #1					
Atom #3			-		

SARAh Representational Analysis -

Performs the calculations of Representational Analysis. These allow the determination of atomic displacements or magnetic structures that can accompany a second-order phase transition. Output files includes a tailored summary with cut-and-paste tables written in LaTeX. (Win9x, 2000, Vista and Windows 7) [1]

SARAh from A.S. Wills

Basireps(FullProf) from J. Rodriguez-Carvajal

For many good reasons the representation approach became the most used method of analysis. But with a "collateral damage": many magnetic structures were determined and reported without identifying its magnetic symmetry not even its point-group symmetry.

The belief that representation method was a full alternative to the magnetic symmetry groups is not due to Bertaut....

Acta Cryst. (1968) A24, 217

E. F. BERTAUT

229

this will impose less stringent conditions on the coerficients in the Hamiltonian.

7. Magnetoelectricity

The reader may get the impression that the author is hostile to the use of magnetic groups. In fact the author is only defending representation theory. The main objection of the reader might be that in the abstract sense magnetic and space groups are isomorphous* so that a structure belonging to a representation of a space group G (even when the representation is not onedimensional real) also belongs to a representation of the isomorphous Shubnikov group G'. This is perfectly correct, but still means that we would abandon symmetry invariance in favour of representation theory

Can we ignore magnetic groups entirely? The answer is no, not only in microscopic, say atomic systems[†] (Dimmock & Wheeler, 1962) but also macroscopically when a magnetic system is coupled with other forms of energy.

A specific example is magnetoelectricity.[‡] Here the

What is the problem of using "only" irreps?

i) Degrees of freedom of a magn. phase are constrained by its symmetry group: <u>this can imply stronger restrictions than the irrep</u> <u>assignment</u>, but it can also allow secondary degrees of freedom not described by this irrep.

ii) Physical properties, couplings are constrained by the symmetry of the phase:

for instance in multiferroics:

magnetoelectric, magnetoelastic, twinning, switching properties, etc. are governed by the magnetic point group in relation with the parent point group (ferroic species)

The magnetic symmetry group of an incommensurate phase is a magnetic superspace group...with a well defined **magnetic point group**

Representation analysis vs magnetic space groupsc

In simple cases (one dimen. irreps) both symmetry descriptions are equivalent

Example: nuclear space group C222, magnetic ordering with k=0

B₂ spin ordering mode on C222 nuclear structure:

Representation analysis vs magnetic space groups

For multidim. irreps: several MSGs are possible for the same irrep

Representation analysis vs magnetic space groups

For multidim. irreps: several MSGs are possible for the same irrep

The same spin arrangement can produce different MSGs (and different ferroic properties) (The non magnetic atoms are also important for the magnetic symmetry!)

Pr₂CuO₄ I4/mmm, k=(1/2,1/2,0)

 $C_A ccm$ (**c**, **a** – **b**, **a** + **b**; $\frac{1}{4}, \frac{3}{4}, \frac{1}{4}$)

Point group: mmm1'

Gd₂CuO₄ Cmce, k=(0,0,0)

Point group: m'mm' (weak ferromagnetism)

Polar magnetic symmetry of Lu_2MnCoO_6 due to the non-magnetic atoms:

Polar symmetry when non-magnetic atoms are considered.

Non-polar symmetry without non-magnetic atoms !

The polar direction is NOT along the chains!

Towards the systematic application of Magnetic Symmetry....

Acta Cryst. A (2008)

Daniel T. Litvin

http://www.iucr.org/books

Towards the systematic application of Magnetic Symmetry....

D.T. Litvin Tables of the 1651 MAGNETIC SPACE GROUPS (MSGs)

Towards the systematic application of Magnetic Symmetry....

H. T. Stokes B. J. Campbell

- 1. <u>Computer readable listings</u> of MSGs (Shubnikov groups)
- 2. Extension of some of the programs of the ISOTROPY suite to magnetic systems (combined application of irreps and magnetic symmetry groups)

ISOTROPY Software Suite

http://stokes.byu.edu/iso/isotropy.php

Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell, Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84606, USA, stokesh@byu.edu

Description: The ISOTROPY software suite is a collection of software which applies group theoretical methods to the analysis of phase transitions in crystalline solids. How to cite: ISOTROPY Software Suite, iso.byu.edu.

References and Resources

Isotropy subgroups and distortions

- ISODISTORT: Explore and visualize distortions of crystalline structures. Possible distortions include atomic displacements, atomic ordering, strain, and magnetic moments.
- ISOSUBGROUP: Coming soon!
- . ISOTROPY: Interactive program using command lines to explore isotropy subgroups and their associated distortions.
- SMODES: Find the displacement modes in a crystal which brings the dynamical matrix to block-diagonal form, with the smallest possible blocks.
- FROZSL: Calculate phonon frequencies and displacement modes using the method of frozen phonons.

Space groups and irreducible representations

- ISOCIF: Create or modify CIF files.
- FINDSYM: Identify the space group of a crystal, given the positions of the atoms in a unit cell.
- New! ISO-IR: Tables of Irreducible Representations. The 2011 version of IR matrices.

- ICO MAC: Taklas of magnetic analog around both in human readable and computer readable former

Magnetic symmetry application tools and databases in the Bilbao Crystallographic Server

Magnetic Symmetry and Applications			
MGENPOS	General Positions of Magnetic Space Groups		
MWYCKPOS	Wyckoff Positions of Magnetic Space Groups		
MAGNEXT	Extinction Rules of Magnetic Space Groups		
IDENTIFY MAGNETIC GROUP	Identification of a Magnetic Space Group from a set of generators in an arbitrary setting		
	Magnetic Point Group Tables		
MAXMAGN	Maximal magnetic space groups for a given a propagation vector and resulting magnetic structural models		
MAGMODELIZE	Magnetic structure models for any given magnetic symmetry		
k-SUBGROUPSMAG	Magnetic subgroups consistent with some given propagation vector(s) or a supercell		
MAGNDATA 🕰	A collection of magnetic structures with transportable cif-type files		
	3D Visualization of magnetic structures with Jmol		
	Symmetry-adapted form of magnetic crystal tensors		

main developers: Samuel V. Gallego, Luis Elcoro, Emre S. Tasci, Mois. I. Aroyo, J. Manuel Perez-Mato

Possible distorted structures/phases of $BaTiO_3$ with k=(0,0,0)?

obtained with $Pm\bar{3}m$ SUBGROUPS (Bilbao server) P4/mmm $R\bar{3}m$ $Pm\bar{3}$ $P\bar{4}3m$ P432P4/m $R\bar{3}$ R3mR32 $P\bar{4}2m$ $P\bar{4}m2$ P23CmmmPmmmP422P4mmR3C2/mP2/mP222C222Pmm2P4 $P\bar{4}$ Amm2Cmm2- $P\overline{1}$ C2CmP2PmP1

Subgroups of cubic Pm-3m without multiplication of the unit cell (k=0):

Subgroups of cubic Pm-3m without multiplication of the unit cell (k=0) which are possible for atomic positions at 1a,1b and 3c :

Subgroups of cubic Pm-3m without multiplication of the unit cell (k=0) which are possible for atomic positions at 1a,1b and 3c depending on the irrep of the order parameter:

Possible magnetic symmetries for a magnetic phase with propagation vector (1/2,0,0) and parent space group Pnma

(a maximal symmetry compatible with the k-vector is often realized)

Representation analysis vs magnetic space groupsc

For multidim. irreps: several MSGs are possible for the same irrep

Parent: I4/mmm1'

2k magnetic structure

k1=(-1/2,0,1/2) k2=(0,1/2,1/2)

I4/mm1' -> $C_a 2/m \frac{k1=(-1/2,0,1/2)}{k2=(0,1/2,1/2)}$

MAGNDATA: A Collection of magnetic structures with portable cif-type files

Element search (separate with space or comma):
OR Search

312 structures found

 $Sr_2F_2Fe_2OS_2 (MAGNDATA #2.2)$

Magnetic Space (Magnetic Space Groups		
MGENPOS	General Positions of Magnetic Space Groups		
MWYCKPOS	Wyckoff Positions of Magnetic Space Groups		
	Extinction Rules of Magnetic Space Groups		

Ba₅Co₅ClO₁₃

nuclear/positional reflection condition: (2h,-h,l) l=2n (magnetic sites: 2a, 4e, 4f. all (0,0,m_z) Magnetic diffraction: **Reflection (2, -1, 3)** pure magnetic (2h,-h,l) P6₃' /m' m' c (194.268): absent l even present I odd P6₃/m' m' c (194.270): absent I odd

(spins are symmetry restricted to be along c in both groups)

obtained with **MTENSOR**

Symmetry-adapted form of the Magnetoelectric tensor α^{T}_{ij} (inverse effect)

- 2 nd rank Magnetoelectric tensor α^T_{ii} (inverse effect)
- Transforms like aeV²
- Axial tensor which inverts under time-reversal symmetry operation
- Constitutive equation: P_i=α^t_{ij}H_j
- Relates Magnetic field H with Polarization P

3m

3m1'

$\boldsymbol{\alpha^{t}}_{ij}$	j			
		1	2	3
	1	0	α ^t 12	0
1	2	-α ^t 12	0	0
	3	0	0	0

$\boldsymbol{\alpha^{t}}_{ij}$	j			
		1	2	3
i	1	0	0	0
	2	0	0	0
	3	0	0	0

J. Phys.: Condens. Matter 28 (2016) 286001 (15pp)

doi:10.1088/0953-8984/28/2

Symmetry conditions for type II multiferroicity in commensurate magnetic structures

J M Perez-Mato¹, S V Gallego¹, L Elcoro¹, E Tasci² and M I Aroyo¹

 ¹ Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Apartado 644, 48080 Bilbao, Spain
 ² Department of Physics, Middle East Technical University, 06800 Ankara, Turkey

E-mail: jm.perez-mato@ehu.es

Received 8 January 2016, revised 3 May 2016 Accepted for publication 4 May 2016 Published 24 May 2016

Abstract

Type II multiferroics are magnetically ordered phases that exhibit ferroelectricity as a magnetic induced effect. We show that in *single-k* magnetic phases the presence in the paramagnetic phase of non-symmorphic symmetry combined with some specific type of magnetic propagation vector can be sufficient for the occurrence of this type of multiferroic behaviour. Other symmetry scenarios especially favourable for spin driven multiferroicity are also presented. We review and classify known type II multiferroics under this viewpoint. In addition, some other magnetic phases which due to their symmetry properties can exhibit type II multiferroicity are pointed out.

What about incommensurate structures?

Symmetry of Incommensurate Crystal Phases. I. Commensurate Basic Structures

10. Magnetic superspace-group symmetry of Cr

In the AF_2 phase S(k) is parallel to the z axis and left invariant [according to (72)] by $(4_z, 1)$ and $(m_x, 1)'$. Again, if the phase relation (84) holds, then it is also left invariant by $(m_z, \bar{1})$. In this case the magnetic superspace group for the AF_2 phase is

$$M_{AF_2} = P_{b1}^{I} \frac{Mm'm'}{1} \frac{m}{1} \frac{Mm'm'}{1}.$$
 (86)

BY A. JANNER AND T. JANSSEN

9. Magnetic superspace groups

As shown by Overhauser (1962, 1968), the ground state of an electron gas in a crystal does not necessarily have a uniform spin and charge distribution, but may show charge-density waves (CDW) and/or spin-density waves (SDW). We have already seen that CDW's may lead to an incommensurate crystal phase. The same can occur in magnetic crystals through SDW's. Actually, incommensurability was discovered first in

Acta Cryst. (1980). A 36, 399–408 1980

2014 IUCr Ewald Prize to Janner and Janssen

Aloysio Janner and T. W. J. M. (Ted) Janssen, Emeriti Professors at U. of Nijmegen, The Netherlands, have been awarded the tenth Ewald Prize, 'for the development of superspace crystallography and its application to the analysis of aperiodic crystals'. The award will be presented on August 5, 2014, at the opening ceremony of the IUCr congress in Montreal, Canada.

First fundamental steps towards the combined application of magnetic superspace symmetry and representation analysis in incommensurate magnetic structures :

Acta Cryst. A (2010)

Magnetic space and superspace groups, representation analysis: competing or friendly concepts?

Václav Petříček,* Jiří Fuksa and Michal Dušek

2. JANA2006 is extended to allow refinement of magnetic structures both commensurate and incommensurate, using magnetic space and superspace groups First fundamental steps towards the combined application of magnetic superspace symmetry and representation analysis in incommensurate magnetic structures :

H. T. Stokes B. J. Campbell

1. Extension of some of the programs of the ISOTROPY suite to magnetic systems including incommensurate structures and magnetic superspace groups.

http://stokes.byu.edu/iso/isotropy.php

ISOTROPY Software Suite

Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell, Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84606, USA, stokesh@byu.edu

Description: The ISOTROPY software suite is a collection of software which applies group theoretical methods to the analysis of phase transitions in crystalline solids. **How to cite**: ISOTROPY Software Suite, iso.byu.edu.

References and Resources

Isotropy subgroups and distortions

- ISODISTORT: Explore and visualize distortions of crystalline structures. Possible distortions include atomic displacements, atomic ordering, strain, and magnetic moments.
- ISOSUBGROUP: Coming soon!
- ISOTROPY: Interactive program using command lines to explore isotropy subgroups and their associated distortions.
- SMODES: Find the displacement modes in a crystal which brings the dynamical matrix to block-diagonal form, with the smallest possible blocks.
- FROZSL: Calculate phonon frequencies and displacement modes using the method of frozen phonons.

Space groups and irreducible representations

- ISOCIF: Create or modify CIF files.
- FINDSYM: Identify the space group of a crystal, given the positions of the atoms in a unit cell.
- New! ISO-IR: Tables of Irreducible Representations. The 2011 version of IR matrices
- ICO MAC: Tables of meanatic energy frauna, both in human readable and computer readable forme

TOPICAL REVIEW

Magnetic superspace groups and symmetry constraints in incommensurate magnetic phases

J M Perez-Mato¹, J L Ribeiro², V Petricek³ and M I Aroyo¹

 ¹ Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
 ² Centro de Fisica da Universidade do Minho, P-4710-057 Braga, Portugal
 ³ Institute of Physics, Academy of Sciences of the Czech Republic v.v.i., Na Slovance 2, CZ-18221 Praha 8, Czech Republic

E-mail: jm.perez-mato@ehu.es

Received 11 November 2011, in final form 13 February 2012 Published 26 March 2012 Online at stacks.iop.org/JPhysCM/24/163201

Abstract

Superspace symmetry has been for many years the standard approach for the analysis of non-magnetic modulated crystals because of its robust and efficient treatment of the structural constraints present in incommensurate phases. For incommensurate magnetic phases, this generalized symmetry formalism can play a similar role. In this context we review from a practical viewpoint the superspace formalism particularized to magnetic incommensurate phases. We analyze in datail the modulated between the description using superspace commensurate

Incommensurate modulated structures

Harmonic Modulation with propagation vector k of "quantity" A of atom μ :

$$A(l,\mu) = A_{\mu} e^{-i2\pi k \cdot (l+r\mu)} + A_{\mu}^{*} e^{i2\pi k \cdot (l+r\mu)}$$

How do we describe a modulated structure without periodicity?

Simplest case: single-k modulated structures

(One incommensurate propagation vector k (and its opposite -k!) :

SYMMETRY OF INCOMMENSURATE PHASES

(Phase) global shift of all modulations along x₄ is energy invariant!

Symmetry operations in 1k incommensurate crystals:

sym. operations: space group operations + phase shifts of all modulations along x₄

magnetic superspace group: $\{ \{\mathbf{R}_i | \mathbf{t}_i, \tau_i \}, \{\mathbf{R'}_i | \mathbf{t}_i, \tau_i \} \}$

magnetic point group: set of all roto-inversion and rotoinversion+time inversion operations {R, R'} in its magnetic superspace group!

> Incommensurate magnetic structures have an unambiguous magnetic point group symmetry

A simple general but <u>very important</u> "Theorem":

(1'| 0 0 0 ½) is a superspace symmetry operation of any single-k INC magnetic modulation.

1' belongs to the symmetry point group of ANY single-k INC phase (grey point group)

Symmetry relations between the atomic modulations

Example: inversion in an incommensurate 1-k magnetic structure:

$$(x \ y \ z)$$

$$(-1|000)$$

$$(-x - y - z)$$

$$(atom \ 2)$$

$$(-1|000,0): -x1 - x2 - x3 - x4 + 1 \longrightarrow M_2(-x_4) = M_1(x_4)$$

$$(-1|000,0): -x1 - x2 - x3 - x4 + 1 \longrightarrow M_2(-x_4) = M_1(x_4)$$

If atom 1= atom 2: (atom 1 lies on the inversion center)

$$M_{1}(-x_{4}) = M_{1}(x_{4})$$

$$M_{1\alpha}(x_{4}) = M_{1\alpha,nc} \cos(2\pi x_{4})$$
only cosine terms
$$\alpha = x, y, z$$
collinear

Representation analysis vs magnetic space groupsc

Possible MSSGs for a given irrep are derived by ISODISTORT and by JANA2006

Description of an incommensurate structure using superspace symmetry: RbFe(MoO₄)₂ magndata 1.1.2

Basic unitcell:

(not necessarily the paramgn one).

5.5955(6), 5.5955(6), 7.4377(7) 90, 90, 120

Propagation (wave) vector:

 $1 \quad 0.333333 \quad 0.333333 \quad 0.458$

Asymmetric unit (positions):

Rb1 Rb 0.00000 0.00000 0.50000 Fe1 Fe 0.00000 0.00000 0.50000 Mo1 Mo 0.333333 0.6666667 0.234(3) Mo2 Mo -0.333333 -0.6666667 -0.234(3) O1 O 0.333333 0.6666667 0.463(6) O2 O -0.333333 -0.6666667 -0.463(6) O3 O 0.103(4) -0.218(3) 0.158(4) O4 O -0.103(4) 0.218(3) -0.158(4)

Superspace group: P31'(1/3,1/3,g)ts

x1,x2,x3,x4 ,+1 -x2,x1-x2,x3,-x2+x4+1/3,+1 -x1+x2,-x1,x3,-x1+x4+2/3, +1 x1,x2,x3,x4+1/2, -1 -x2,x1-x2,x3,-x2+x4+5/6,-1 -x1+x2,-x1,x3,-x1+x4+1/6,-1

Asymmetric unit (moments):

Fe1 0 0 0

Asymmetric unit (moment modulations):

cosine			sine
Fe1 x	1	-3.9/√3	3.9(5)
Fe1 y	1	-3.9*2/√3	0

Asymmetric unit (position modulations): ??? They may exist! (subject to the same superspace group)

information portable through a magCIF file

INCOMMENSURATE STRUCTURES

One propagation vector

Conclusions:

• Properties of magnetic phases are constrained by their magnetic symmetry: a superspace group if incommensurate

• Whatever method one has employed to determine a magnetic structure, the final model should include its magnetic symmetry.

• Representation analysis of magnetic structures is NOT equivalent to the use of magnetic symmetry (i.e. to give an irrep is not equivalent to give the magnetic space (superspace) group of the system)

• The best approach: to combine both representation analysis and magnetic symmetry, and there are now free computer tools for that!

The future of Magnetic Crystallography is clearly an unified approach of symmetry invariance and representations

(borrowed from a recent presentation of Juan Rodriguez-Carvajal (ILL))

Magnetic symmetry groups

A related workshop is taking place in december :

