

Symmetry-based computational tool for magnetic crystallography in the Bilbao Crystallographic Server: Hands on tutorial

J. Manuel Perez-Mato Facultad de Ciencia y Tecnología Universidad del País Vasco, UPV-EHU BILBAO, SPAIN

www.cryst.ehu.es

FCT/ZTF	bilbao crystallographic server [The crystallographic site at the Condensed Matter Physics Dept. of the University of the Basque Country]							
IVCr201A	Space Groups Retrieval Tools							
	GENPOS	Generators and General Positions of Space Groups						
2014: International Year of Crystallography	WYCKPOS	Wyckoff Positions of Space Groups						
	HKLCOND	Reflection conditions of Space Groups						
Sections	MAXSUB	Maximal Subgroups of Space Groups						
Betrievel Teele	SERIES	Series of Maximal Isomorphic Subgroups of Space Groups						
Retrieval loois	WYCKSETS	Equivalent Sets of Wyckoff Positions						
Magnetic Symmetry and Applications	NORMALIZER	Normalizers of Space Groups						
Group-Subgroup	KVEC	The k-vector types and Brillouin zones of Space Groups						
Representations	SYMMETRY OPERATIONS	Geometric interpretation of matrix column representations of symmetry operations						
Solid State	IDENTIFY GROUP	Identification of a Space Group from a set of generators in an arbitrary setting						
Structure Utilities								
Subperiodic								
Incommensurate Structures Database	Magnetic Symmetry and Applicatio	ns						
Raman and Hyper-Raman scattering								
Contractive	MGENPOS	General Positions of Magnetic Space Groups						
Contact us	MWYCKPOS	Wyckoff Positions of Magnetic Space Groups						
About us	MAGNEXT	Extinction Rules of Magnetic Space Groups						
LINKS	IDENTIFY MAGNETIC GROUP A Identification of a Magnetic Space Group from a set of generators in an arbitrary setting							

Open access website with crystallographic databases and programs for structural and mathematical crystallography, solid state physics and structural chemistry (PHASE TRANSITIONS).

bilbao crystallographic server

[The crystallographic site at the Condensed Matter Physics Dept. of the University of the Basque Country]

present team:

- Emre Tasci
- Gemma de la Flor
- Samuel V. Gallego
- Luis Elcoro
- •Gotzon Madariaga
- Mois I. Aroyo
 - J. Manuel Perez-Mato

Luis Elcoro

started in 1997

bilbao crystallographic server

started 1997

[The crystallographic site at the Condensed Matter Physics Dept. of the University of the Basque Country]

past members:

- D. Orobengoa
- C. Capillas
- E. Kroumova
- S. Ivantchev

external contributors:

- H. Stokes& B. Campbell (USA) ISODISTORT
- H. Wondratchek (Germany)
- J. Rodriguez-Carvajal (France) FULLPROF
- V. Petricek (Chequia) JANA2006
- A. Kirov (Bulgaria)
- M. Nespolo (France)
- K. Momma (Japan) VESTA
- R. Hanson (USA) Jmol

	Magnetic Space Groups									
\rightarrow	MGENPOS	General Positions of Magnetic Space Groups								
1	MWYCKPOS	Wyckoff Positions of Magnetic Space Groups								
	MAGNEXT	Extinction Rules of Magnetic Space Groups								
		Maximal magnetic space groups for a given space group and a propagation vector								

General Positions of the Group Pn'ma' (#62.448)

For this space group, BNS and OG settings coincide. Its label in the OG setting is given as: Pn'ma' (#62.8.509)

N			Setting					
	(x,y,z) form		N	latri	x for	m	Geom. interp.	Seitz notation
1	x, y, z, +1 m _x ,m _y ,m _z	(1 0 0	0 1 0	0 0 1	$\begin{pmatrix} 0\\0\\0 \end{pmatrix}$	1 <u>+1</u>	(1 0,0,0)
2	-x, -y, -z, +1 m _x ,m _y ,m _z	(-1 0 0	0 -1 0	0 0 -1	$\begin{pmatrix} 0\\0\\0 \end{pmatrix}$	-1 0,0,0 <u>+1</u>	(-1 0,0,0)
3	-x, y+1/2, -z, +1 -m _x ,m _y ,-m _z	(-1 0 0	0 1 0	0 0 -1	$\left(\begin{smallmatrix} 0\\1/2\\0\end{smallmatrix}\right)$	2 (0,1/2,0) 0,y,0 <u>+1</u>	(2 _y 0,1/2,0)
4	x, -y+1/2, z, +1 -m _x ,m _y ,-m _z	(1 0 0	0 -1 0	0 0 1	$\left(\begin{smallmatrix} 0\\1/2\\0\end{smallmatrix}\right)$	m x,1/4,z <u>+1</u>	(m _y 0,1/2,0)
5	x+1/2, -y+1/2, -z+1/2, -1 -m _x ,m _y ,m _z	(1 0 0	0 -1 0	0 0 -1	$\begin{pmatrix} 1/2\\ 1/2\\ 1/2\\ 1/2 \end{pmatrix}$	2 (1/2,0,0) x,1/4,1/4 <u>-1</u>	(2 _x ' 1/2,1/2,1/2)
6	-x+1/2, -y, z+1/2, -1 m _x ,m _y ,-m _z	(-1 0 0	0 -1 0	0 0 1	$\binom{1/2}{0}{1/2}$	2 (0,0,1/2) 1/4,0,z <u>-1</u>	(2 _z ' 1/2,0,1/2)
7	-x+1/2, y+1/2, z+1/2, -1 -m _x ,m _y ,m _z	(-1 0 0	0 1 0	0 0 1	$\begin{pmatrix} 1/2\\ 1/2\\ 1/2\\ 1/2 \end{pmatrix}'$	n (0,1/2,1/2) 1/4,y,z <u>-1</u>	(m _x ' 1/2,1/2,1/2)
8	x+1/2, y, -z+1/2, -1 m _x ,m _y ,-m _z	(1 0 0	0 1 0	0 0 -1	$\binom{1/2}{0}{1/2}$	a x,y,1/4 <u>-1</u>	(m _z ' 1/2,0,1/2)

	Magnetic Space Groups									
	MGENPOS	General Positions of Magnetic Space Groups								
-	MWYCKPOS	Wyckoff Positions of Magnetic Space Groups								
	MAGNEXT	Extinction Rules of Magnetic Space Groups								
		Maximal magnetic space groups for a given space group and a propagation vector								

Wyckoff Positions of the Group Pn'ma' (#62.448)

For this space group, BNS and OG settings coincide. Its label in the OG setting is given as: Pn'ma' (#62.8.509)

Multiplicity	Wyckoff letter	Coordinates						
8	d	$ \begin{array}{ll} (x,y,z \mid m_{x},m_{y},m_{z}) & (x+1/2,-y+1/2,-z+1/2 \mid -m_{x},m_{y},m_{z}) \\ (-x,y+1/2,-z \mid -m_{x},m_{y},-m_{z}) & (-x+1/2,-y,z+1/2 \mid m_{x},m_{y},-m_{z}) \\ (-x,-y,-z \mid m_{x},m_{y},m_{z}) & (-x+1/2,y+1/2,z+1/2 \mid -m_{x},m_{y},m_{z}) \\ (x,-y+1/2,z \mid -m_{x},m_{y},-m_{z}) & (x+1/2,y,-z+1/2 \mid m_{x},m_{y},-m_{z}) \end{array} $						
4	c	$(x,1/4,z \mid 0,m_{y},0) \qquad (x+1/2,1/4,-z+1/2 \mid 0,m_{y},0) (-x,3/4,-z \mid 0,m_{y},0) \qquad (-x+1/2,3/4,z+1/2 \mid 0,m_{y},0)$						
4	b	$(0,0,1/2 m_x,m_y,m_z) (1/2,1/2,0 -m_x,m_y,m_z) (0,1/2,1/2 -m_x,m_y,-m_z) (1/2,0,0 m_x,m_y,-m_z)$						
4	а	$(0,0,0 \mid m_{x},m_{y},m_{z}) \qquad (1/2,1/2,1/2 \mid -m_{x},m_{y},m_{z}) (0,1/2,0 \mid -m_{x},m_{y},-m_{z}) \qquad (1/2,0,1/2 \mid m_{x},m_{y},-m_{z})$						

Site Symmetries of the Wyckoff Positions

WP	Representative	Site symmetry
4a	(0,0,0 m _x ,m _y ,m _z)	-1
4b	(0,0,1/2 m _x ,m _y ,m _z)	-1
4c	(x,1/4,z 0,m _y ,0)	.m.
8d	(x,y,z m _x ,m _y ,m _z)	1

Magnetic Space G	Magnetic Space Groups							
MGENPOS	General Positions of Magnetic Space Groups							
MWYCKPOS	Wyckoff Positions of Magnetic Space Groups							
MAGNEXT	Extinction Rules of Magnetic Space Groups							

MAGNEXT

MAGNEXT: Magnetic Systematic Absences

	Option A: Systematic absences for a magnetic space group in standard settings
tinction rules for any Shubnikov magnetic	Magnetic Space Group number: Please, enter the label of group or choose it
be obtained introducing the I for this purpose at the pted form of the structure	Standard/Default Setting
	Other interfaces for alternative uses MAGNEXT are:
	Option B: For systematic absences for a magnetic space group in any setting, click here
a set of generators in any	 Option C: For a list of magnetic space groups compatible with a given set of systematic absences,
patible with a set of	click here
or a superspace group	 For systematic absences for magnetic superspace groups click here

Diffraction symmetry (non-polarized) and systematic absences

Non-polarized magnetic diffraction at diffraction vector \boldsymbol{H} is proportional to the component of $\boldsymbol{F}_{M}(\boldsymbol{H})$ perpendicular to \boldsymbol{H}

H = ha * +kb * +lc * - = (h,k,l)

Consequences of a symmetry operation $\{R, \theta | t\}$:

non-magnetic: $F(H) = e^{i2\pi H \cdot t} F(H.R)$ Intensity(H.R)=Intensity(H)

magnetic: $F_{M}(H) = \theta \ det(R) \ e^{i2\pi H.t} R. F_{M}(H.R)$ Intensity(H.R)=Intensity(H) $H.t = ht_1 + kt_2 + lt_3$ H.R = (h,k,l).R Diffraction symmetry (non-polarized) and systematic absences

$$H = ha * +kb * +lc * = (h,k,l)$$

Extinction rules: ("trivial" cases)

$$\{1'| 000 \} \qquad \qquad \mathsf{F}(H) = e^{i2\pi H \cdot t} \mathsf{F}(H.R) \rightarrow \mathsf{F}(H) = \mathsf{F}(H)$$
(non-magnetic structures)
$$\mathsf{F}_{\mathsf{M}}(H) = \theta \ det(R) \ e^{i2\pi H \cdot t} \ R. \ \mathsf{F}_{\mathsf{M}}(H.R) \rightarrow \mathsf{F}_{\mathsf{M}}(H) = \mathsf{F}_{\mathsf{M}}(H)$$

$$\mathsf{Zero!}$$

 $\{1' | 00 1/2 \}$

$$F(H) = e^{i\pi I} F(H)$$
 Nuclear diffraction: absent I = odd

(type IV MSG)

$$F_{M}(H) = -e^{i\pi I} F_{M}(H)$$
 Magnetic diffraction: absent I= even

Diffraction symmetry (non-polarized) and systematic absences

$$H = ha * +kb * +lc * = (h,k,l)$$

Extinction rules:

5. Using <u>MAGNEXT</u> in its option B, we re-obtain the systematic absences for the symmetry operations $\{2_{z} | 000\}$; and for $\{2_{z} | 000\%\}$, and obtain those for the corresponding primed operations.

6. Using <u>MAGNEXT</u> we obtain the systematic absences that should fulfill the magnetic diffraction of LaMnO3 (space group Pn'ma', moments along x)

Magnetic diffraction Systematic Absences for the group *Pn'ma'* (#62.448)

For this space group, BNS and OG settings coincide. Its label in the OG setting is given as: Pn'ma' (#62.8.509)

Values of h, k, l: h integer, k integer, l integer

Systematic absences for special reflections:

Diffraction vector type:	(0 k 0) ->	Systematic absence:	k = 2n
For $k = 1$:	I /= 0	F = (Fx, 0, 0)	
For $k = 2$:	I = 0	F = (0, Fy, 0)	

Diffraction vector type: (h 0 0) -> Systematic absence: h = 2n + 1

For h = 1: I = 0 F = (0,0,0)For h = 2: I /= 0 F = (0,Fy,0)

Diffraction vector type: (0 0 I) -> Systematic absence: I = 2n + 1

For 1 = 1: I = 0 F = (0,0,0) For 1 = 2: I /= 0 F = (0,Fy,0)

[Show form of structure factor for every type of reflection]

Go to the list of the General Positions of the Group *Pn'ma'* (#62.448) [OG:*Pn'ma'* (#62.8.509)] Go to the list of the Wyckoff Positions of the Group *Pn'ma'* (#62.448) [OG:*Pn'ma'* (#62.8.509)]

[Show systematic absences in a different setting]

Symmetry-adapted form of the Structure Factors

Magnetic Space Group: Pn'ma' (#62.448) [OG: Pn'ma' (#62.8.509)]

Values of h, k, l: h integer, k integer, l integer

Structure factors for general reflections (produced by centrings):

Diffraction vector type: h,k,l

For any h,k,l: $I \neq 0$ F = (Fx,Fy,Fz)

Structure factors for special reflections:

Those diffraction vector types which are fully absent due to the general rule are not listed

Diffraction vector type: 0,k,0

For	k	=	1:	I /= 0	F	=	(Fx,0,0)
For	k	=	2:	I = 0	F	=	(0,Fy,0)

Diffraction vector type: h,0,I

For	h	=	1,	1	=	1:	I	/=	0	F	=	(0,Fy,0)
For	h	=	1,	1	=	2:	I	/=	0	F	=	(0,Fy,0)
For	h	=	2,	1	=	1:	I	/=	0	F	=	(0,Fy,0)
For	h	=	2,	1	=	2:	I	/=	0	F	=	(0,Fy,0)

Diffraction vector type: h,0,0

For $h = 1$:	I = 0	F = (0, 0, 0)
For $h = 2$:	I /= 0	F = (0, Fy, 0)

Diffraction vector type: 0,0,1

For $l = 1$:	I = 0	F = (0, 0, 0)
For $1 = 2$:	I /= 0	F = (0, Fy, 0)

For more subtle systematic absences in LaMnO3 (due to the special position of the magnetic atoms), see:

J. Appl. Cryst. (2012). 45, 1236–1247

Magnetic Space (Magnetic Space Groups			
MGENPOS	General Positions of Magnetic Space Groups			
MWYCKPOS	Wyckoff Positions of Magnetic Space Groups			
	Extinction Rules of Magnetic Space Groups			

Ba₅Co₅ClO₁₃

(spins are symmetry restricted to be along c in both groups)

Paraelectric phase P4₂/mnm

Site 4f

magnetic absences

(common for the two MSGs) (h,0,0) h even (0,k,0) k even (0,0,I) I any

> structure factor is necessarily of the form:

> > (0,0,Fz)

(b) P4₂'/mnm' (136.500) (0,k,l) k+l odd (Fx,0,0) (h,0,l) h+l odd (0,Fy,0)

absences that permit to distinguish the two MSGs

Magnetic Symmetry and Applications

MGENPOS	General Positions of Magnetic Space Groups
MWYCKPOS	Wyckoff Positions of Magnetic Space Groups
MAGNEXT	Extinction Rules of Magnetic Space Groups
IDENTIFY MAGNETIC GROUP	Identification of a Magnetic Space Group from a set of generators in an arbitrary setting
	Magnetic Point Group Tables
MAXMAGN	Maximal magnetic space groups for a given a propagation vector and resulting magnetic structural models
MAGMODELIZE	Magnetic structure models for any given magnetic symmetry
k-SUBGROUPSMAG	Magnetic subgroups consistent with some given propagation vector(s) or a supercell
MAGNDATA 🛆	A collection of magnetic structures with transportable cif-type files
	3D Visualization of magnetic structures with Jmol
	Symmetry-adapted form of magnetic crystal tensors

MAXMAGN: Maximal magnetic space groups for a given a propagation vector and resulting magnetic structural models

MAXMAGN: Maximal magnetic space groups for a given a propagation vector and resulting magnetic structural models

MAXMAGN provides the possible magnetic space groups that can be assigned to a 1-k commensurate magnetic phase assuming that the magnetic symmetry is a maximal one. The space group of the paramagnetic phase and the observed propagation vector are required as input. Optionally, the parent paramagnetic structure can be introduced (by hand or by a cif file). In this latter case the program provides the constrains for the different possible symmetries and cif-like files can be produced. These files permit the different alternative models to

Structure data of the paramagnetic phase will be included						ventional	setting
Please, enter the label of the space group of the paramagnetic phase					se it		
Please, enter the propagation vector k:	k _x	0	ky	0	kz	0	
	Submit						

MAXMAGN

The program provides ALL possible MAXIMAL magnetic symmetries for single-k magnetic structures compatible with a known propagation vector.

For each possible symmetry, a starting magnetic structure model is provided, with the symmetry constraints and the parameters to be fitted.

Usually magnetic phases comply with one of these MAXIMAL symmetries. But if necessary, one can descend to lower symmetries, liberating some of the constraints on the magnetic moments (and atomic positions).

For simple propagation vectors: A very efficient and simpler alternative method to representation method

Maximal magnetic space groups for the space group 64 (*Cmce*) and the propagation vector k = (1, 0, 0)

Group (BNS)	Transformation matrix	General positions	neral positions Systematic absences	
<i>P_Cnma</i> (#62.455)	$ \left(\begin{array}{cccc} 0 & 1 & 0 & 1/4 \\ -1 & 0 & 0 & 1/4 \\ 0 & 0 & 1 & 0 \end{array} \right) $ Alternatives (twin-related)	Show	Show	Show
Pcbca (#61.439)	(1 0 0 0 0 1 0 0 0 0 1 0) Alternatives (twin-related)	Show	Show	Show
P _A bcn (#60.429)	$ \left(\begin{array}{cccc} 0 & 1 & 0 & 1/4 \\ 0 & 0 & 1 & 1/4 \\ 1 & 0 & 0 & 0 \end{array} \right) $ Alternatives (twin-related)	Show	Show	Show
P _B bcm (#57.390)	$ \left(\begin{array}{ccccc} 0 & 0 & 1 & 1/4 \\ 1 & 0 & 0 & 1/4 \\ 0 & 1 & 0 & 0 \end{array} \right) $ Alternatives (twin-related)	Show	Show	Show
P _A ccn (#56.374)	(0 1 0 0 0 0 1 0 1 0 0 0) Alternatives (twin-related)	Show	Show	Show
P _A bam (#55.362)	(0 0 1 0 0 -1 0 0 1 0 0 0) Alternatives (twin-related)	Show	Show	Show
Р _А сса (#54.349)	(0 1 0 1/4 0 0 1 1/4 1 0 0 0) Alternatives (twin-related)	Show	Show	Show
P _C mna (#53.335)	(1 0 0 0 0 1 0 0 0 0 1 0) Alternatives (twin-related)	Show	Show	Show

La₂CuO₄

Selected magnetic space group: 5- P_Accn (#56.374)

Setting of the parent group

Lattice parameters: a=5.35700, b=13.14800, c=5.40600, alpha=90., beta=90., gamma=90.

Magnetic Moments associated to magnetic atoms

N	Atom	New WP	Multiplicity	Magnetic moment	Values of $M_x^{}, M_y^{}, M_z^{}$
1	Cu1 Cu 0.00000 0.00000 0.00000	$(0,0,0 \mid 0,m_y,m_z) (0,1/2,1/2 \mid 0,-m_y,m_z)$ $(1/2,1/2,0 \mid 0,-m_y,-m_z) (1/2,0,1/2 \mid 0,m_y,-m_z)$	4	(0,M _y ,M _z)	$M_y = 0.00001$ $M_z = 0.00001$
2	La1 La 0.00000 0.36110 0.00460	$\begin{array}{c} (0,y,z \mid 0,m_{y},m_{z}) \; (0,-y+1/2,1/2 \mid 0,-m_{y},m_{z}) \\ (0,1/2,-z+1/2 \mid 0,-m_{y},m_{z}) \; (0,-y,-z \mid 0,m_{y},m_{z}) \\ (1/2,1/2,0 \mid 0,-m_{y},-m_{z}) \; (1/2,-y,1/2 \mid 0,m_{y},-m_{z}) \\ (1/2,0,-z+1/2 \mid 0,m_{y},-m_{z}) \; (1/2,-y+1/2,-z \mid 0,-m_{y},-m_{z}) \end{array}$	8	-	-
3	O1 O 0.25000 -0.00510 0.25000	$\begin{array}{c} (1/4,y,1/4 \mid 0,m_{y},0) \ (3/4,-y+1/2,3/4 \mid 0,-m_{y},0) \\ (3/4,-y,3/4 \mid 0,m_{y},0) \ (1/4,1/2,1/4 \mid 0,-m_{y},0) \\ (3/4,1/2,1/4 \mid 0,-m_{y},0) \ (1/4,-y,3/4 \mid 0,m_{y},0) \\ (1/4,-y+1/2,3/4 \mid 0,-m_{y},0) \ (3/4,0,1/4 \mid 0,m_{y},0) \end{array}$	8	-	-
4	O2 O 0.00000 0.18300 -0.02430	$\begin{array}{c} (0,y,z\mid 0,m_{y},m_{z}) \; (0,-y+1/2,1/2\mid 0,-m_{y},m_{z}) \\ (0,1/2,-z+1/2\mid 0,-m_{y},m_{z}) \; (0,-y,-z\mid 0,m_{y},m_{z}) \\ (1/2,1/2,0\mid 0,-m_{y},-m_{z}) \; (1/2,-y,1/2\mid 0,m_{y},-m_{z}) \\ (1/2,0,-z+1/2\mid 0,m_{y},-m_{z}) \; (1/2,-y+1/2,-z\mid 0,-m_{y},-m_{z}) \end{array}$	8	-	-

[Go to setting standard (c, a, b; 0, 0, 0)]

Export data to MCIF file Go to a subgroup

Group (BNS) Transformation matrix General positions Systematic absences Magnetic structure La₂CuO₄ 0 1. 0 1/4 -1 0 0 1/4 Show Pcnma (#62.455) Show Show 0 0 1 0 Alternatives (twin-related) 0) 0 0 0 0 0 1 Pcbca (#61.439) Show Show Show 0) 0 0 1 Alternatives (twin-related) 0 1/4 0 1 0 0 1 1/4 1 0 0 0 / P_Abcn (#60.429) Show Show Show Alternatives (twin-related) 0 0 1 1/4 0 1/4 1 0 P_Bbcm (#57.390) Show Show Show 1 0 0 0 Alternatives (twin-related) 0 0 0 1 0 0 1 0 0 PAccn (#56.374) Show Show Show P_Accn (56.374) 0 0 0 0 0 1 0 0 -1 P_Abam (#55.362) Show Show Show 0) 0 1 0 Alternatives (twin-related) (=0, ≈0, m_z) 0 1 0 1/4 0 1 1/4 0 P_Acca (#54.349) Show Show Show 1 0 0 0 Alternatives (twin-related) 0 0) 0 -1 0 0 1 0 Pcmna (#53.335) Show Show Show 0) 1 0 0 Alternatives (twin-related)

Maximal magnetic space groups for the space group 64 (Cmce) and the propagation vector k = (1, 0, 0)

Na₂MnF₅ Parent: P2₁/c k= (0, 1/2, 0)

Derive the possible orderings of maximal symmetry

Tutorial MAXMAGN, example 4

7. From the knowledge of its parent space group and its propagation vector (P21/c and k=(0,1/2,0)), use <u>k-SUBGROUPSMAG</u> to explore all possible symmetries of the magnetic structure of Na₂MnF₅ and check that the system is probably a multiferroic of type II, with the magnetic ordering breaking the symmetry into a polar phase. Assuming that the Fe spins are aligned along a, obtain with MAXMAGN the two possible alternative models of maximal symmetry. See tutorial of MAXMAGN, example 4. (file required: 3.Na2MnF5_parent.cif)

Рьс (a,2b,c;0 1/4 0)

P_bc (a,2b,c;0 3/4 0)

P₅-1 (a,-c,2b;0 0 0)

P_s-1 (a,-c,2b;0 1/2 0)

Why a k=(0,1/2,0) magnetic ordering in a structure with parent space group P2₁/c breaks necessarily its point group symmetry of the structure?

Because the lattice (and "antilattice") resulting from this k-vector is incompatible with the screw operation $\{2_v | 0 \frac{1}{2} 0\}$...

8. Using <u>k-SUBGROUPSMAG</u> obtain the k-maximal subgroups for the parent space group P2/c for a propagation vector k=(0,1/2,0), and compare with those obtained for P2₁/c. Check that in the case of a parent P2/c symmetry the inversion symmetry is not lost in any of the possible maximal MSGs. This happens for the case of P2₁/c symmetry because the binary rotation includes a non-trivial translation.

We use <u>MAXMAGN</u> to explore the four possible alternative models of maximal symmetry for HoMnO₃

9. Obtain with MAXMAGN the four possible alternative models of maximal symmetry for the magnetic structure of HoMnO₃, which are compatible with its propagation vector k= (1/2,0,0) (upload as starting data the cif file of its parent Pnma structure). Obtain the symmetry constraints for the moments of the Ho atoms, in each case. Check that the two possible orthorhombic symmetries can be distinguished by the systematic absence of all reflections of type (h, 0,I)+k, which will happen for one of the groups and not the other, if the spins are aligned along a. See tutorial of MAXMAGN, example 2, for a more detailed tutorial exercise. (file required: *4.HoMnO3_parent.cif*).

Tutorial MAXMAGN, example 2

HoMnO₃ (Muñoz et al. Inorg. Chem. 2001)

diffraction peaks:

Gp= Pnma propagation vector k=(1/2 0 0) : point X

Maximal magnetic space groups for the space group 62 (*Pnma*) and the propagation vector k = (1/2, 0, 0)

Ν	Group (BNS)	Transformation matrix	General positions	Systematic absences	Magnetic structure	
1	<i>P</i> ana2₁ (#33.149)	$ \begin{pmatrix} -2 & 0 & 0 & 1/4 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} $ (Alternatives (twin-related)	Show	Show	Show	P _a na2 ₁
2	P _b mn2 ₁ (#31.129)	0 2 0 1/4 -1 0 0 1/4 0 0 1 0 Alternatives (twin-related) 1 1	Show	Show	Show	P _a nm2 ₁
3	P _c 2 ₁ /c (#14.82)	-2 0 2 0 0 1 0 0 -1 0 0 0	Show	Show	Show	$P_a 2_1/a$
4	P _a 2 ₁ /m (#11.55)	2 0 0 0 0 1 0 0 1 0 Alternatives (twin-related) 1 1 1 1 1	Show	Show	Show	$P_a 2_1/m$

Maximal subgroups which allow non-zero magnetic moments for at least one atom are coloured

HoMnO₃ An Inevitable Multiferroic...

parent space group: Pnma, k=(1/2,0,0)

A more complex example : HoMnO₃

(Muñoz et al. Inorg. Chem. 2001)

Gp= Pnma

diffraction peaks:

Pz

unit cell: 2a, b, c

Equivalent to the use of space group **Pnm2**₁(31) with half cell along a:

Atomic positions of asymmetric unit:

Magnetic space group: $P_a nm2_1$ (31.129)

(non-conventional setting)

+ (1'|1/2 0 0)

- 8b $(x, y, z | m_x, m_y, m_z), (-x+1/4, -y, z+1/2 | -m_x, -m_y, m_z), (x, -y+1/2, z | -m_x, m_y, -m_z), (-x+1/4, y+1/2, z+1/2 | m_x, -m_y, -m_z)$
- 4a (x, 1/4, z| 0, m_y , 0), (-x+1/4, 3/4, z+1/2 | 0, - m_y , 0)

Magnetic moments of the asymmetric unit (µB):

Ho1 4a 0.04195 0.25000 0.98250 Ho2 4a 0.95805 0.75000 0.01750 Mn1 8b 0.00000 0.00000 0.50000 O1 4a 0.23110 0.25000 0.11130 O12 4a 0.76890 0.75000 0.88870 O2 8b 0.16405 0.05340 0.70130 O22 8b 0.83595 0.55340 0.29870 Mn1 3.87 <mark>≈</mark>0.0 <mark>≈</mark>0.0

Split independent positions in the lower symmetry

WP

General position: x, y, z not restricted by symmetry!

a CIF-type file can be produced:

These files permit the different alternative models to be analyzed, refined, shown graphically, transported to ab-initio codes etc., with programs as ISODISTORT, JANA2006, STRCONVERT, etc. A controlled descent to lower symmetries is also possible.

```
_space_group.magn_number_BNS
                               31.129
                                "P b m n 2 1"
_space_group.magn_name_BNS
_space_group.magn_point_group_"mm21'"
_space_aroup.maan_point_aroup_number "7.2.21"
_cell_lenath_a
                               11.67080
                               7.36060
_cell_lenath_b
cell lenath c
                               5.25720
                               90.00
cell anale alpha
                               90.00
_cell_angle_beta
_cell_angle_gamma
                               90.00
```

loop_

_space_group_symop.magn_id _space_group_symop.magn_operation_xyz _space_group_symop.magn_operation_mxmymz 1 x,y,z,+1 mx,my,mz 2 -x+3/4,-y,z+1/2,+1 -mx,-my,mz 3 x,-y+1/2,z,+1 -mx,my,-mz 4 -x+3/4,y+1/2,z+1/2,+1 mx,-my,-mz

loop_

_space_group_symop.magn_centering_id _space_group_symop.magn_centering_xyz _space_group_symop.magn_centering_mxmymz 1 x,y,z,+1 mx,my,mz 2 x+1/2,y,z,-1 -mx,-my,-mz

loop_

_atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_occupancy Ho Ho 0.04195 0.25000 0.98250 1 Ho_1 Ho 0.95805 0.75000 0.01750 1 Mn Mn 0.00000 0.00000 0.50000 1 01 0 0.23110 0.25000 0.11130 1 01_1 0 0.7689 0.75000 0.88870 1 02 0 0.16405 0.05340 0.70130 1 02_1 0 0.83595 0.55340 0.29870 1

loop_

_atom_site_moment_label _atom_site_moment_crystalaxis_x _atom_site_moment_crystalaxis_y _atom_site_moment_crystalaxis_z Mn 3.87 0.0 0.0

Derive the symmetry constraints on some crystal tensor properties of a magnetic phase using MTENSOR

10. Use <u>MTENSOR</u> to obtain some of the crystal tensor properties of the magnetic phase of HoMnO₃ (electric polarization, magnetization, linear magnetoelectric tensor, cuadratic magnetoelectricity,...). The same for the magnetic phase of LaMnO₃. (Upload the corresponding mcif files in STRCONVERT, copy the list of symmetry operations in the output of STRCONVERT and paste in the option B of MTENSOR, but deleting the translational parts, so that the point-group operations are left). *(files required: 2.HoMnO3.mcif and 5.LaMnO3.mcif)*

Use of <u>k-SUBGROUPSMAG</u> to explore all possible symmetries for HoMnO₃

11. Using k-SUBGROUPSMAG explore all possible symmetries for the magnetic structure of $HoMnO_3$, which are compatible with its propagation vector. Check that there are two different possible MSGs of the same type, namely of type P_a2_1 . From the output of the program for the two groups, determine what makes them different.

Possible magnetic symmetries for a magnetic phase with propagation vector (1/2,0,0) and parent space group Pnma

Symmetry operation {1'|1/2,0,0} is present in any case: all MSGs are type IV

(magnetic cell= $(2\mathbf{a}_{p}, \mathbf{b}_{p}, \mathbf{c}_{p})$)