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Pn’ma’ (62.448)  

Example: 

LaMnO3 





 MAGNEXT 



Diffraction symmetry (non-polarized) and systematic absences  

= (h,k,l) 

non-magnetic: 

magnetic: 

Intensity(H.R)=Intensity(H) 

Intensity(H.R)=Intensity(H) 

Consequences of a symmetry operation {R,θ|t}: 

F(H) = ei2πH.t F(H.R) 

FM(H) = θ det(R) ei2πH.t R. FM(H.R) 

H.t = ht1+kt2+lt3 
H.R =(h,k,l).R 

Non-polarized magnetic diffraction at diffraction vector H is proportional   
to the component of FM(H) perpendicular to H    



(non-magnetic structures) 

Extinction rules: (“trivial” cases) 

{1'|	  0	  0	  0	  	  }	   

- 

zero! 

no condition 

{1'|	  0	  0	  	  1/2	  }	   
Nuclear diffraction: absent l = odd 

Magnetic diffraction: absent l= even 

(type IV MSG) 

	  	  (h,k ,l)= 

F(H) = ei2πH.t F(H.R) 

FM(H) = θ det(R) ei2πH.t R. FM(H.R) 

FM(H) = - eiπl FM(H) 

F(H) = eiπl F(H) 

Diffraction symmetry (non-polarized) and systematic absences  



Extinction rules: 

{2z|	  0	  0	  0	  	  }	   

2z. 

no condition 

	  	  (h,k ,l)= 

F(H) = ei2πH.t F(H) 

FM(H) = θ det(2z) ei2πH.t 2z. FM(H) 
H=(0,0,l) 
H.2z= H 

FM=(0,0,Fz) // H absence for all (0,0,l) 

{2z|	  0	  0	  ½	  }	   absence 
for l=odd F(H) = ei2πH.t F(H) 

FM(H) = θ det(2z) ei2πH.t 2z. FM(H) H=(0,0,l) 
H.2z= H 

l =even: FM=(0,0,Fz) // H absence 

ei2πH.t 

F(H) = eiπl F(H) 

FM(H) =eiπl 2z. FM(H) 

l =odd   FM=(Fx,Fy,0)  not parallel to  H presence 

Systematic absences for  {2’z|	  0	  0	  ½	  }	  ?	   

Diffraction symmetry (non-polarized) and systematic absences  



6. Using MAGNEXT we obtain the systematic absences that should  
fulfill the magnetic diffraction of LaMnO3  
(space group Pn’ma’, moments along x) 

5. Using MAGNEXT  in its option B, we re-obtain the systematic absences  
for the symmetry operations {2z|	  0	  0	  0	  	  };	  and	  for	  {2z|	  0	  0	  ½	  }, and obtain 
those for the corresponding primed operations. 	  	  







For more subtle systematic absences in LaMnO3  
(due to the special position of the magnetic atoms), see: 

J. Appl. Cryst. (2012). 45, 1236–1247 



Reflection (2, -1, 3)  

nuclear/positional reflection condition:  

P63’/m’m’c (194.268): 

P63/m’m’c (194.270): 

(2h,-h,l)   l=2n 

  Ba5Co5ClO13 

pure magnetic 

absent l odd 

Magnetic diffraction:  

absent l even 
present l odd 

(2h,-h,l) 

( spins are symmetry restricted to be along c in 
both groups) 

(magnetic sites: 2a, 4e, 4f. all (0,0,mz) 



magnetic absences 
(common for the two 
MSGs) 
(h,0,0)   h  even 
(0,k,0)   k  even 
(0,0,l)    l  any 

(0,k,l)   k+l  odd   (Fx,0,0) 
(h,0,l)    h+l  odd  (0,Fy,0) 

Paraelectric phase    P42/mnm 

Site 4f 

absences that permit to  
distinguish the two MSGs   

(0,0,Fz) 

structure factor is 
necessarily of the 
form: 





The program provides ALL possible MAXIMAL magnetic symmetries for single-k 
magnetic structures compatible with a known propagation vector. 

For each possible symmetry, a starting magnetic structure model is provided, with the  
symmetry constraints and the parameters to be fitted.  
Usually magnetic phases comply with one of these MAXIMAL symmetries. But if  
necessary, one can descend to lower symmetries, liberating some of the constraints on  
the magnetic moments (and atomic positions).  

For simple propagation vectors: A very efficient and simpler alternative 
 method to representation method 

MAXMAGN 



La2CuO4 

a





La2CuO4 

PAccn (56.374) 
a

(=0, ≈0, mz) 



Na2MnF5 

k=  (0, 1/2, 0) 

Parent: P21/c 

Derive the possible 
orderings of maximal symmetry 

Tutorial MAXMAGN, example 4 

7. From the knowledge of its parent space group and its propagation 
vector (P21/c and k=(0,1/2,0)), use k-SUBGROUPSMAG to explore 
all possible symmetries of the magnetic structure of Na2MnF5 and 
check that the system is probably a multiferroic of type II, with the 
magnetic ordering breaking the symmetry into a polar phase.  
Assuming that the Fe spins are aligned along a, obtain with 
MAXMAGN the two possible alternative models of maximal 
symmetry. See tutorial of MAXMAGN,  example 4. (file required: 
3.Na2MnF5_parent.cif) 





Why a k=(0,1/2,0) magnetic ordering in a structure with parent 
space group P21/c breaks necessarily its point group symmetry 
of the structure? 

Because the lattice (and “antilattice”) resulting from this k-vector is  
incompatible with the screw operation {2y|0 ½ 0} … 

8. Using k-SUBGROUPSMAG obtain the k-maximal subgroups for the parent space 
group P2/c for a propagation vector k=(0,1/2,0), and compare with those obtained for 
P21/c.  Check that in the case of a parent P2/c symmetry the inversion symmetry is 
not lost in any of the possible maximal MSGs. This happens for the case of P21/c 
symmetry because the binary rotation includes a non-trivial translation.  



9.  Obtain with MAXMAGN the four possible alternative models of 
maximal symmetry for the magnetic structure of HoMnO3, which are 
compatible with its propagation vector k= (1/2,0,0) (upload as 
starting data the cif file of its parent Pnma structure). Obtain the 
symmetry constraints for the moments of the Ho atoms, in each 
case. Check that the two possible orthorhombic symmetries can be 
distinguished by the systematic absence of all reflections of type (h,
0,l)+k, which will happen for one of the groups and not the other, if 
the spins are aligned along a. See tutorial of MAXMAGN,  example 
2, for a more detailed tutorial exercise. (file required: 
4.HoMnO3_parent.cif).  

We use MAXMAGN to explore the four possible alternative models 
of maximal symmetry for HoMnO3  

Tutorial MAXMAGN, example 2 



Gp=	  Pnma	  
propaga;on	  vector	  k=(1/2	  0	  0)	  :	  point	  X	  

a* 
c* 

magn. 

HoMnO3 

diffrac;on	  peaks:	  

(Muñoz et al. Inorg. Chem. 2001) 

Panm21	  

Pa21/m	  

Pana21	  

Pa21/a	  



HoMnO3 

parent space group: Pnma, k=(1/2,0,0) 

PZ PZ 

An Inevitable Multiferroic... 

Structure reported in 2001, 
but authors unaware of its 
multiferroic character 

graphic models are depicted 
assuming collinearity along x 
(my and mz are symmetry allowed)  



A	  more	  complex	  example	  :	  

Gp=	  Pnma	  
propaga;on	  vector	  k=(1/2	  0	  0)	  :	  point	  X	  

a* 
c* 

magn. 

HoMnO3 

a 
2a 

symmetry operation kept: {1'|1/2 0 0}  1'  belongs to the point group 
of the magnetic phase 

diffrac;on	  peaks:	  

Pana21	  

Pa21/m	  

Pa21/a	  

Pnma1'	  

Panm21	   mm2	  1’	  

point group 

mm2	  1’	  

2/m	  1’	  

2/m	  1’	  

Pz 

{1'|1/2 0 0} 
Equivalent to a lattice 
 translation for the positions 

(Muñoz et al. Inorg. Chem. 2001) 

Pz 
Induced 
 polarization:  
multiferroic 



Ho1 4a 0.04195 0.25000 0.98250 
Ho2 4a 0.95805 0.75000 0.01750 
Mn1 8b 0.00000 0.00000 0.50000 
O1   4a 0.23110 0.25000 0.11130 
O12 4a 0.76890 0.75000 0.88870 
O2   8b 0.16405 0.05340 0.70130 
O22 8b 0.83595 0.55340 0.29870 

Magne;c	  space	  group:	  	  Panm21	  	  (31.129)	  	  
	  	  	  	  	  	  	  	  	  	  	  (non-‐conven/onal	  se3ng)	  

WP            + (1’|1/2 0 0) 
 8b (x, y, z | mx, my, mz), (-x+1/4, -y, z+1/2 | -mx, -my, mz),  

(x, -y+1/2, z | -mx, my, -mz), (-x+1/4, y+1/2, z+1/2 | mx, -my, -mz)   

 4a (x, 1/4, z| 0, my, 0), (-x+1/4, 3/4, z+1/2 | 0, -my, 0)  

HoMnO3 

Atomic positions of asymmetric unit: 

Equivalent to the use of space group Pnm21(31) 
with half cell along a:  

unit cell: 2a, b, c 

Mn1   3.87   ≈0.0   ≈0.0 

Magnetic moments of the asymmetric unit (µB): 

Split independent  
positions in the lower  
symmetry  

General position: 
x, y, z not restricted 
by symmetry! 



a CIF-type file can be produced: 

These files permit the 
different alternative models 
to be analyzed, refined, 
shown graphically, 
transported to ab-initio 
codes etc., with programs as 
ISODISTORT, JANA2006, 
STRCONVERT, etc. A 
controlled descent to lower 
symmetries is also possible. 



10. Use MTENSOR to obtain some of the crystal tensor properties of the magnetic 
phase of HoMnO3 (electric polarization, magnetization, linear magnetoelectric tensor, 
cuadratic magnetoelectricity,...). The same for the magnetic phase of LaMnO3. 
(Upload the corresponding mcif files in STRCONVERT, copy the list of symmetry 
operations in the output of STRCONVERT and paste in the option B of MTENSOR, 
but deleting the translational parts, so that the point-group operations are left). (files 
required: 2.HoMnO3.mcif and 5.LaMnO3.mcif)   

Derive the symmetry constraints on some crystal tensor properties of 
a magnetic phase using MTENSOR 



11. Using k-SUBGROUPSMAG explore all possible symmetries for 
the magnetic structure of HoMnO3, which are compatible with its 
propagation vector. Check that there are two different possible 
MSGs of the same type, namely of type  Pa21. From the output of the 
program for the two groups, determine what makes them different. 

Use of k-SUBGROUPSMAG to explore all possible symmetries 
 for HoMnO3  



Possible magnetic symmetries for a magnetic phase with 
propagation vector (1/2,0,0) and parent space group Pnma 

Symmetry operation {1’|1/2,0,0} is present in any case: all  MSGs are type IV  
(magnetic cell= (2ap,bp,cp)) 

exp(i2πk.a) = -1 


