Status of J-PARC MLF MUSE (MUon Science Establishment) J-PARC MLF Muon Section/KEK IMSS K Shimomura #### **Contents** - MUSE layout - D-Line - U-Line → Ultra slow muon beamline - S-Line - H-Line - 2nd target station S-Line Surface μ⁺(30 MeV/c) S1 area is ready to extract μ⁺ beam. Hopefully first muon beam is coming soon! U-Line Ultra Slow μ⁺ (0.05-60keV) First Ultra Slow muon beam commissioning will be performed soon. H-Line Surface μ⁺ For Mu-HF, g-2/EDM e up to 120 MeV/c For DeeMe μ up to 120 MeV/c For μCF Muon Microscopy Electromagnetic coils in H-Line tunnel were installed. #### **D-Line** Surface μ^+ (30 MeV/c) Decay μ^+/μ^- (5-120 MeV/c) Trouble in power supply of septum magnet was occurred. #### Rotating Graphite Target Rotating Target was successfully installed on 16th September of 2014. Now in operation without any trouble! ■ Vacuum pressure 10⁻⁵ Pa □ Control system Confirmed # Muon Beam Line, where either Surface Muon or Decay Muon can be extracted! @D-Line #### D1 Spectrometer KALLIOPE KEK Advanced Linear and Logic board Integrated Optical detector for Position and Electrons magnet inner bore: Ф410 Integrated Or washing and character of 254→10 sets/round Solid angle total: (0.523+0.646) × 10 × 2=23.4% LF up to 4kG GAP 135mm Kojima et al. Can be inserted up to Φ254 200 M of coincidence e+ events/h for 15 x 15 mm² with a 20 mm collimator. Solid Angle 23.4 %/7% ~ 3.3 times compared with D Ω 1 | | | | _ | | | |-------------------------|-------------------------------|------------------------------|------------------------------|--------------------------------|----------| | 諸元 | DΩ-1
J-PARC | New D1
J-PARC | ARGUS
RIKEN-RAL | CHRONUS
RIKEN-RAL | <u>-</u> | | Field (kG) | 1.5 | 4 | 4 | 4 | ¥ | | Solid Angle
Channels | 8%/128 _{pair}
PMT | 23%/640pai
r
MPPC | <mark>25%</mark> /192
PMT | <mark>26%</mark> /606
MAPMT | (| | Data
Acquisition | 20-40M/h
for15x15mm | 100-
200M/h
for15y15mm | 40M/h for
25x25mm | 86M/h for
unknown size | | データ収集レートが5~6倍 1測定30分→5分 新たな問題 どう解析するか? →自動解析?前人未到の領域 S1実験エリアに同じデザインの <mark>分光器</mark>を設置済み。2015年新年 のビームコミッショニング待ち #### New Dilution Refrigerator for µSR at D1 For investigation of magnetic ground state, superconducting state or nove quantum phenomena, μSR experiment below 1K is quite important. We have installed new dilution refrigerator at MUSE D1. Operation has been started from 2014B. **Features** Automatic cooling system \rightarrow Cooling can be done within 1.5days without manpower. Top loading \rightarrow Sample can be quickly changed. Pulsetube refrigerator is used \rightarrow No liquid helium is required. Dilution refrigerator installed on the top of D1 spectrometer Example of the μ SR measurement in the new dilution refrigerator. #### **U-Line** #### Dedicated to Ultra Slow Muon #### more than 10 times intense than D-Line First goal of U-Line: Surface muon source that produce Ultra Slow muon (E= 0.05 eV – 30 keV) with high intensity and high luminosity. #### **U-Line** 5.0 x 10⁸ /s surface muons, 20 times more intense than D-line which is the strongest at present! Dedicated beam line to produce Ultra Slow muon (E=0.05-30 keV) with high intensity and high luminosity. #### Introduction: generation of USM #### **Extraction of USM** #### Beam detector: MCP (micro channel Single Anode **MCP** Single Anode Method: Destructive (Put into beamline to use) Delay-line Anode Count number of #### Measurements: USM observation #### Measurements: USM observation #### Beam commissioning: Technique #### Component scanning # 2D scan Relation between components EB1-ED (2016/04/22 04:32:24) [MCP@F4A] EQ8-EQ9 (2016/04/25 11:16:58) [MCP@F4A] 21 Optimization of components Varying current/voltage of components collect USM by MCP #### Rate of USM day by day | Date
(2016) | USM/s | |----------------|----------------| | 2/21 | 0.001 | | 2/23 | 0.6 | | 3/06 | 1.4 | | 3/28 | 6.8 ± 0.1 | | 4/21 | 36.7 ± 0.7 | ## Transport USM @ µSR #### Transport USM @ µSR spectrometer ### S-line construction plan #### S-line #### S-Line: Phase 1 The beamline construction to extract muon beam at one of four experimental areas, **S1**, was completed in Nov. 2014. The beam commissioning has just started in Oct. **S1** SQ13-1§eptum Kicker1 SB2 DC sep. **FCV** **SQ7-9** Exp. Hall No. 1 SQ4-6 SB1 SQ10-12 M2 tunnel **SQ1-3** #### Evaluation of the momentum distribution by measuring TOF (Y. Nakatsugav A waveform (accumulated for 100~200pulses) is analyzed by Gaussian fitting to determine the arrival time, Te+ andTµ+. - -Beamline length (Target <-> S1) - $TOF\mu^+ = L/c + (T\mu^+ Te^+)$ - $P\mu^+ = \beta \gamma M_{\mu}$ - The peak height is potted against the estimated facement and edge is clearly In the case that only a subtle peak corresponding to e+ is seen, an averaged Te+ # μ+-e+ decay histogram obtained at S1 single hit histogram of ch0001 on 0-cond. ## H-Line Planning to complete H1Area For DeeMe & Mu-HF exs. In 2015! Kawamura et al. # Schedule for Power Upgrade MW (RCS)was successfully achieved Last December, 2014! # 2nd Target Station # Ultra high intensity muon beam Stroboscope Muon beam from 2nd Neutron target - Muon intensity ~100 times larger than U line. - Stroboscopic µSR and muon imaging will become possible. **Neutron** Muon beam Master plan 2017 #### **Summary** - Rotating Graphite Target is in operation! - D-Line, User's Runs have been going on! - Upgade's budget funded! - U-Line Construction (Completed!) - → Broken thermal shield was fixed! - → Ultra slow muon beamline (Completed!) - S-Line (S1 Completed!) - → Muon Beam at S1 is now available. - H-Line → Budget request for the MEXT! - 2nd target station → now in design.