Status of J-PARC MLF MUSE

(MUon Science Establishment)

J-PARC MLF Muon Section/KEK IMSS

K Shimomura

Contents

- MUSE layout
- D-Line
- U-Line → Ultra slow muon beamline
- S-Line
- H-Line
- 2nd target station

S-Line
Surface μ⁺(30 MeV/c) S1 area is ready to extract μ⁺ beam.
Hopefully first muon beam is coming soon!

U-Line Ultra Slow μ⁺ (0.05-60keV)

First Ultra Slow muon beam commissioning will be performed soon.

H-Line

Surface μ⁺ For Mu-HF, g-2/EDM
e up to 120 MeV/c For DeeMe
μ up to 120 MeV/c For μCF
Muon Microscopy
Electromagnetic coils in H-Line
tunnel were installed.

D-Line

Surface μ^+ (30 MeV/c) Decay μ^+/μ^- (5-120 MeV/c)

Trouble in power supply of septum magnet was occurred.

Rotating Graphite Target

Rotating Target was successfully installed on 16th September of 2014.

Now in operation without any trouble!

■ Vacuum pressure 10⁻⁵ Pa

□ Control system Confirmed

Muon Beam Line, where either Surface Muon or Decay Muon can be extracted!

@D-Line

D1 Spectrometer

KALLIOPE

KEK Advanced Linear and Logic board Integrated Optical detector for Position and Electrons

magnet inner bore: Ф410 Integrated Or washing and character of 254→10 sets/round Solid angle total: (0.523+0.646) × 10 × 2=23.4%

LF up to 4kG GAP 135mm

Kojima et al.

Can be inserted up to Φ254

200 M of coincidence e+ events/h

for 15 x 15 mm² with a 20 mm collimator.

Solid Angle 23.4 %/7% ~ 3.3 times compared with D Ω 1

			_		
諸元	DΩ-1 J-PARC	New D1 J-PARC	ARGUS RIKEN-RAL	CHRONUS RIKEN-RAL	<u>-</u>
Field (kG)	1.5	4	4	4	¥
Solid Angle Channels	8%/128 _{pair} PMT	23%/640pai r MPPC	<mark>25%</mark> /192 PMT	<mark>26%</mark> /606 MAPMT	(
Data Acquisition	20-40M/h for15x15mm	100- 200M/h for15y15mm	40M/h for 25x25mm	86M/h for unknown size	

データ収集レートが5~6倍 1測定30分→5分 新たな問題 どう解析するか?

→自動解析?前人未到の領域

S1実験エリアに同じデザインの <mark>分光器</mark>を設置済み。2015年新年 のビームコミッショニング待ち

New Dilution Refrigerator for µSR at D1

For investigation of magnetic ground state, superconducting state or nove quantum phenomena, μSR experiment below 1K is quite important.

We have installed new dilution refrigerator at MUSE D1. Operation has been started from 2014B.

Features

Automatic cooling system \rightarrow Cooling can be done within 1.5days without manpower. Top loading \rightarrow Sample can be quickly changed.

Pulsetube refrigerator is used \rightarrow No liquid helium is required.

Dilution refrigerator installed on the top of D1 spectrometer

Example of the μ SR measurement in the new dilution refrigerator.

U-Line

Dedicated to Ultra Slow Muon

more than 10 times intense than D-Line

First goal of U-Line:

Surface muon source that produce Ultra Slow muon (E= 0.05 eV – 30 keV) with high intensity and high luminosity.

U-Line

5.0 x 10⁸ /s surface muons, 20 times more intense than D-line which is the strongest at present!

Dedicated beam line to produce Ultra Slow muon (E=0.05-30 keV) with high intensity and high luminosity.

Introduction: generation of USM

Extraction of USM

Beam detector: MCP (micro channel

Single Anode

MCP

Single Anode

Method: Destructive (Put into beamline to use)

Delay-line Anode

Count number of

Measurements: USM observation

Measurements: USM observation

Beam commissioning: Technique

Component scanning

2D scan Relation between components

EB1-ED (2016/04/22 04:32:24) [MCP@F4A]

EQ8-EQ9 (2016/04/25 11:16:58) [MCP@F4A]

21

Optimization of components

Varying current/voltage of components

collect USM by MCP

Rate of USM day by day

Date (2016)	USM/s
2/21	0.001
2/23	0.6
3/06	1.4
3/28	6.8 ± 0.1
4/21	36.7 ± 0.7

Transport USM @ µSR

Transport USM @ µSR spectrometer

S-line construction plan

S-line

S-Line: Phase 1

The beamline construction to extract muon beam at one of four experimental areas, **S1**, was completed in Nov. 2014.

The beam commissioning has just started in Oct.

S1

SQ13-1§eptum

Kicker1

SB2 DC sep.

FCV

SQ7-9

Exp. Hall No. 1

SQ4-6 SB1

SQ10-12

M2 tunnel

SQ1-3

Evaluation of the momentum distribution by measuring TOF (Y. Nakatsugav

A waveform (accumulated for 100~200pulses) is analyzed by Gaussian fitting to determine the arrival time, Te+ andTµ+.

- -Beamline length (Target <-> S1)
- $TOF\mu^+ = L/c + (T\mu^+ Te^+)$
- $P\mu^+ = \beta \gamma M_{\mu}$
- The peak height is potted against the estimated facement and edge is clearly

In the case that only a subtle peak corresponding to e+ is seen, an averaged Te+

μ+-e+ decay histogram obtained at S1

single hit histogram of ch0001 on 0-cond.

H-Line

Planning to complete H1Area For DeeMe & Mu-HF exs. In 2015!

Kawamura et al.

Schedule for Power Upgrade MW (RCS)was successfully achieved Last December, 2014!

2nd Target Station

Ultra high intensity muon beam Stroboscope Muon beam from 2nd Neutron target

- Muon intensity ~100 times larger than U line.
- Stroboscopic µSR and muon imaging will become possible.

Neutron

Muon beam

Master plan 2017

Summary

- Rotating Graphite Target is in operation!
- D-Line, User's Runs have been going on!
 - Upgade's budget funded!
- U-Line Construction (Completed!)
 - → Broken thermal shield was fixed!
 - → Ultra slow muon beamline (Completed!)
- S-Line (S1 Completed!)
 - → Muon Beam at S1 is now available.
- H-Line → Budget request for the MEXT!
- 2nd target station → now in design.